Otomatisasi Pengoperasian Alat Elektronik Berdasarkan Hasil Prediksi Algoritma Long Short Term Memory

Main Article Content

Afriansyah Afriansyah Ade Irawan


Excessive use of household electricity is one of the causes of the largest amount of national electricity consumption coming from households. One way to reduce the amount of household electricity consumption is to automate the operation of electronic devices. This research proposes utilizing Long Short Term Memory (LSTM) algorithm to predict the habit of operating an electronic device. The prediction is then applied to automate the operation of that by exploiting the time series data from the usage. A series of experiments are conducted to capture the data of operating a manual lamp. Then, an LSTM model is built by training the data. The experiment results show the prediction accuracy of 99,28% and Root Mean Square Error of 0,091. Furthermore, the LSTM model is used to automatically operate a lamp in a month. The electricity cost from the automation is 36,38% lower than the manual.


Download data is not yet available.

Article Details

How to Cite
Afriansyah, A., & Irawan, A. (2020, September 30). Otomatisasi Pengoperasian Alat Elektronik Berdasarkan Hasil Prediksi Algoritma Long Short Term Memory. JITCE (Journal of Information Technology and Computer Engineering), 4(02), 83-89. https://doi.org/https://doi.org/10.25077/jitce.4.02.83-89.2020


[1] S. Kumar, "UBIQUITOUS SMART HOME SYSTEM USING ANDROID APPLICATION", International Journal of Computer Networks & Communications, vol. 6, no. 1, p. 33, 2014.
[2] PLN, Statistik PLN 2018. Jakarta: Sekretariat Perusahaan PT PLN, 2019.
[3] H. Lin, "Implementing Smart Homes with Open Source Solutions", International Journal of Smart Home, vol. 7, no. 4, 2013.
[4] M. Abd El-Latif Mowad, A. Fathy and A. Hafez, "Smart Home Automated Control System Using Android Application and Microcontroller", International Journal of Scientific & Engineering Research, pp. 935-939, 2014.
[5] R. Adhikari and R. Agrawal, "An Introductory Study on Time Series Modeling and Forecasting", arXiv.org, 2013. Tersedia: http://arxiv.org/abs/1302.6613. [Diakses: 15 Juli 2020].
[6] S. Hochreiter and J. Schmidhuber, "LONG SHORT-TERM MEMORY", Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.
[7] Y. Jain and S. Bhandare, "Min Max Normalization Based Data Perturbation Method for Privacy Protection", 2011, vol. 2, pp. 45-49, 2011.
[8] J. Brownlee, Deep Learning for Time Series Forecasting. 2020. Tersedia: https://machinelearningmastery.com/deep-learning-for-time-series-forecasting/. [Diakses: 02 Juni 2020].
[9] A. Akbar, "Biar Gak Kebobolan, Gini Nih Langkah Komplit Menghitung Tarif Listrik di Rumah", Lifepal Media, 2020. Tersedia: https://lifepal.co.id/media/begini-lho-cara-menghitung-tarif-listrik-benar/. [Diakses: 03- Jun- 2020].
[10] A. Pribadi, "Tarif Listrik Triwulan I 2020 Tetap", ESDM, 2020. Tersedia: https://www.esdm.go.id/id/media-center/arsip-berita/tarif-listrik-triwulan-i-2020-tetap. [Diakses: 05 Juni 2020].