Analisa Detak Jantung dengan Metode Heart Rate Variability (HRV) untuk Pengenalan Stres Mental Berbasis Photoplethysmograph (PPG)

Main Article Content

Nefy Puteri Novani Lathifah Arief Rima Anjasmara

Abstract

Emotions influence individual behavior and there is no emotional experience that has a stronger influence than stress. Prolonged stress has a direct negative influence on physical and emotional conditions. For that reason, it is important to know a person's mental stress state, so that further action can be taken later, so as not to have a serious impact on physical and mental health. In this study, the photoplethysmograph (PPG) approach is used to recognize mental stress conditions based on Heart Rate Variability (HRV) frequency domain analysis. In this study stress was identified by SVM classifier using LF, HF and LF / HF Ratio from HRV frequency domain analysis. The LF results were increased in mild stress conditions, HF increased in conditions of mild stress and medium stress and the LF / HF Ratio slowly increased from mild stress to severe stress. The training data obtained 80 data with 95% mild stress accuracy from 19 data, medium stress accuracy 96% from 49 data and 99% severe stress accuracy with 12 data.

Downloads

Download data is not yet available.

Article Details

How to Cite
Novani, N., Arief, L., & Anjasmara, R. (2019, November 7). Analisa Detak Jantung dengan Metode Heart Rate Variability (HRV) untuk Pengenalan Stres Mental Berbasis Photoplethysmograph (PPG). JITCE (Journal of Information Technology and Computer Engineering), 3(02), 90-95. https://doi.org/https://doi.org/10.25077/jitce.3.02.90-95.2019
Section
Articles

References

[1] Gaol, Nasib Tua Lumban. Teori stres: stimulus, respons, dan transaksional. Buletin Psikologi, 2016, 24.1: 1-11.
[2] Anonim [Online]. Available: http://digilib.unila.ac.id/2341/10/Bab%202.pdf [Accessed 19 September 2018].
[3] J.Taelman, "Influence of Mental Stress on Heart Rate and Heart Rate Variability," in IFMBE, Berlin Heidelberg, 2008.
[4] R. J.Choi, "Using Heart Rate Monitors to Detect Mental Stress," in IEEE Computer Society, United States, 2009.
[5] N. P. Novani, L. Arief, R. Anjasmara and A. S. Prihatmanto, "Heart Rate Variability Frequency Domain for Detection of Mental Stress Using Support Vector Machine," 2018 International Conference on Information Technology Systems and Innovation (ICITSI), Bandung - Padang, Indonesia, 2018, pp. 520-525.
[6] M. R. Saputra, "Pemantauan Parameter Fisiologis Pada Pasien Koma," in Fakultas Teknologi Informasi, Universitas Andalas, 2018.
[7] R. Z. Ikhlas, "Sistem Monitoring Detak Jantung untuk Peringatan Dini dalam Mengantisipasi Kelelahan pada Aktifitas Olahraga Lari," in Fakultas Teknologi Informasi, Universitas Andalas, 2018.
[8] D. Yolanda, "Mengukur Tingkat Stres Menggunakan Galvanic Skin Respons dengan Metode Jaringan Syaraf Tiruan Berbasis Arduino Uno," in Fakultas Teknologi Informasi, Universitas Andalas, 2014.
[9] A. Nofrianto, "Identifikasi Tingkat Stres Manusia Menggunakan Metode FUzzy Logic Berbasis Internet of Things (IoT)," in Fakultas Teknologi Informasi, Universitas Andalas, 2016.
[10] H.Mansor, "Stress Recognition Using Photoplathysmograph Signal," in Indonesian Journal of Electrical Engineer and Computer Science, 2017.
[11] S. P.M.Mohan, V.Nagarajan, "Stress Measurement from Wearable Photoplethysmographic Sensor Using Heart Rate Variability Data," in International Conference on Communication and Signal Processing , India,
2016.
[12] L.Vanitha, "Hierarchical SVM to Detect Mental Stress in Human Beings Using Heart Rate Variability," in 2nd International Conference on Devices, Circuits and Systems (ICDCS), 2014.
[13] S.Cohen, "Perceived Stress Scale in a Probability Sample of the United States," Newbury Park: CA : Sage, 1988.