Intelligent 3D Analysis for Detection and Classification of Breast Cancer
Main Article Content
Abstract
Breast cancer continues to be a significant public health problem in the world. Early detection is the key for improving breast cancer prognosis. Mammography has been one of the most reliable methods for early detection of breast carcinomas. However, it is difficult for radiologists to provide both accurate and uniform evaluation for the enormous mammograms generated in widespread screening. Breast cancer computer aided diagnosis (CAD) systems can provide such help and they are important and necessary for breast cancer control. Micro calcifications and masses are the two most important indicators of malignancy, and their automated detection is very valuable for early breast cancer diagnosis. Since masses are often indistinguishable from the surrounding parenchymal, automated mass detection and classification is even more challenging. This research presents algorithms for building a classification system or CAD, especially to obtain the different characteristics of mass and micro calcification using association technique based on classification. Starting with an individual-specific deformable of 3D breast model, this modelling framework will be useful for tracking visible tumors between mammogram images, as well as for registering breast images taken from different imaging modalities. From the results, the classifier developed able to perform well by successfully classifying the cancer and non-cancer (normal) images with the accuracy of 97%. Apart from that, by applying color map to the final results of segmentation provides a more interesting display of information and gives more direction to the purpose of image processing, which distinguishes between cancerous and non-cancerous tissues.
Downloads
Article Details
Please find the rights and licenses in the Journal of Information Technology and Computer Engineering (JITCE).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
2. Author(s)’ Warranties
The author(s) warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JITCE adopts the spirit of open access and open science, which disseminates articles published as free as possible under the Creative Commons license. JITCE permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JITCE on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in future own works, including lectures and books,
- the right to reproduce the article for own purposes,
- the right to self-archive the article.
- the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal (Journal of Information Technology and Computer Engineering).
5. Co-Authorship
If the article was jointly prepared by other authors; upon submitting the article, the author is agreed on this form and warrants that he/she has been authorized by all co-authors on their behalf, and agrees to inform his/her co-authors. JITCE will be freed on any disputes that will occur regarding this issue.
7. Royalties
By submitting the articles, the authors agreed that no fees are payable from JITCE.
8. Miscellaneous
JITCE will publish the article (or have it published) in the journal if the article’s editorial process is successfully completed and JITCE or its sublicensee has become obligated to have the article published. JITCE may adjust the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.
References
[2] Skaane, P., Bandos, A. I., Gullien, R., Eben, E. B., Ekseth, U., Haakenaasen, U., & Niklason, L. T. (2013). Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology, 267(1), 47-56.
[3] Health Quality Ontario. (2016). Ultrasound as an adjunct to mammography for breast cancer screening: a health technology assessment. Ontario health technology assessment series, 16(15), 1.
[4] Harms, S. E. (2001). Integration of breast MRI in clinical trials. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 13(6), 830-836.
[5] Cox, R. F., Hernandez-Santana, A., Ramdass, S., McMahon, G., Harmey, J. H., & Morgan, M. P. (2012). Microcalcifications in breast cancer: novel insights into the molecular mechanism and functional consequence of mammary mineralisation. British journal of cancer, 106(3), 525.
[6] Krupinski, E. A. (2010). Current perspectives in medical image perception. Attention, Perception, & Psychophysics, 72(5), 1205-1217.
[7] Castellino, R. A. (2005). Computer aided detection (CAD): an overview. Cancer Imaging, 5(1), 17.
[8] Cole, E. B., Zhang, Z., Marques, H. S., Edward Hendrick, R., Yaffe, M. J., & Pisano, E. D. (2014). Impact of computer-aided detection systems on radiologist accuracy with digital mammography. American Journal of Roentgenology, 203(4), 909-916.
[9] Jalalian, A., Mashohor, S., Mahmud, R., Karasfi, B., Saripan, M. I. B., & Ramli, A. R. B. (2017). Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection. EXCLI journal, 16, 113.
[10] The, J. S., Schilling, K. J., Hoffmeister, J. W., Friedmann, E., McGinnis, R., & Holcomb, R. G. (2009). Detection of breast cancer with full-field digital mammography and computer-aided detection. American journal of roentgenology, 192(2), 337-340.
[11] Mordang, J. J., Gubern-Mérida, A., Bria, A., Tortorella, F., Mann, R. M., Broeders, M. J. M., & Karssemeijer, N. (2018). The importance of early detection of calcifications associated with breast cancer in screening. Breast cancer research and treatment, 167(2), 451-458.
[12] Razek, N. M. A., Yousef, W. A., & Mustafa, W. A. (2013). Microcalcification detection with and without CAD system (LIBCAD): A comparative study. The Egyptian Journal of Radiology and Nuclear Medicine, 44(2), 397-404.
[13] Stoeblen, F., Landt, S., Ishaq, R., Stelkens-Gebhardt, R., Rezai, M., Skaane, P., & Kuemmel, S. (2011). High-frequency breast ultrasound for the detection of microcalcifications and associated masses in BI-RADS 4a patients. Anticancer research, 31(8), 2575-2581.
[14] Biswas, R., Nath, A., & Roy, S. (2016, September). Mammogram Classification Using Gray-Level Co-occurrence Matrix for Diagnosis of Breast Cancer. In Micro-Electronics and Telecommunication Engineering (ICMETE), 2016 International Conference on (pp. 161-166). IEEE.
[15] Vujasinovic, T., Pribic, J., Kanjer, K., Milosevic, N. T., Tomasevic, Z., Milovanovic, Z., & Radulovic, M. (2015). Gray-level co-occurrence matrix texture analysis of breast tumor images in prognosis of distant metastasis risk. Microscopy and Microanalysis, 21(3), 646-654.
[16] Pratiwi, M., Harefa, J., & Nanda, S. (2015). Mammograms classification using gray-level co-occurrence matrix and radial basis function neural network. Procedia Computer Science, 59, 83-91.
[17] Abdelrahman, A., & Hamid, O. (2012). Breast Ultrasound Images Enhancement Using Gray Level Co-Occurrence Matrices Quantizing Technique. International Journal of Information Science, 2(5), 60-64.
[18] Lee, J., Reece, G. P., & Markey, M. K. (2012). Breast curvature of the upper and lower breast mound: 3D analysis of patients who underwent breast reconstruction. In 3rd International Conference on 3D Body Scanning Technologies(pp. 171-179).
[19] Li, C. M., Segars, W. P., Tourassi, G. D., Boone, J. M., & Dobbins, J. T. (2009). Methodology for generating a 3D computerized breast phantom from empirical data. Medical physics, 36(7), 3122-3131.
[20] Nalawade, Y. V. (2009). Evaluation of breast calcifications. Indian Journal of Radiology & Imaging, 19(4).
[21] Rominger, M. B., Steinmetz, C., Westerman, R., Ramaswamy, A., & Albert, U. S. (2015). Microcalcification-Associated Breast Cancer: Presentation, Successful First Excision, Long-Term Recurrence and Survival Rate. Breast care, 10(6), 380-385.
[22] Naseem, M., Murray, J., Hilton, J. F., Karamchandani, J., Muradali, D., Faragalla, H., ... & Brezden-Masley, C. (2015). Mammographic microcalcifications and breast cancer tumorigenesis: a radiologic-pathologic analysis. BMC cancer, 15(1), 307.
[23] Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., ... & Taylor, P. (2015). Mammographic Image Analysis Society (MIAS) database v1. 21.
[24] Herwanto, A. M. A., & Arymurthy, A. M. (2013). Association technique based on classification for classifying microcalcification and mass in mammogram. IJCSI International Journal of Computer Science Issues, 10(1), 1694-0814.
[25] Gur, D., Abrams, G. S., Chough, D. M., Ganott, M. A., Hakim, C. M., Perrin, R. L., ... & Bandos, A. I. (2009). Digital breast tomosynthesis: observer performance study. American Journal of Roentgenology, 193(2), 586-591.
[26] Bruno, D. O. T., do Nascimento, M. Z., Ramos, R. P., Batista, V. R., Neves, L. A., & Martins, A. S. (2016). LBP operators on curvelet coefficients as an algorithm to describe texture in breast cancer tissues. Expert Systems with Applications, 55, 329-340.
[27] Bandyopadhyay, S. K. (2010). Pre-processing of Mammogram Images. International Journal of Engineering Science and Technology, 2(11), 6753-6758.
[28] Bandyopadhyay, S. K. (2010). Detection of abnormal masses in mammogram images. International Journal of Computer Science and Information Technologies, 1(5), 438-442.
[29] Bandyopadhyay, S. K., Maitra, I. K., & Kim, T. H. (2011, April). Identification of abnormal masses in digital mammography images. In Ubiquitous Computing and Multimedia Applications (UCMA), 2011 International Conference on (pp. 35-41). IEEE.
[30] Ponraj, D. N., Jenifer, M. E., Poongodi, P., & Manoharan, J. S. (2011). A survey on the preprocessing techniques of mammogram for the detection of breast cancer. Journal of Emerging Trends in Computing and Information Sciences, 2(12), 656-664.
[31] Al-Bayati, M., & El-Zaart, A. (2013). Mammogram images thresholding for breast cancer detection using different thresholding methods. Advances in Breast Cancer Research, 2(03), 72.
[32] Shanmugavadivu, P., & Narayanan, S. L. (2013, January). Segmentation of microcalcifications in mammogram images using intensity-directed region growing. In Computer Communication and Informatics (ICCCI), 2013 International Conference on (pp. 1-6). IEEE.
[33] Swetha, T. L. V. N., & Bindu, C. H. (2015, December). Detection of Breast cancer with Hybrid image segmentation and Otsu's thresholding. In Computing and Network Communications (CoCoNet), 2015 International Conference on (pp. 565-570).