Alat Koreksi dan Rekontruksi Tulisan pada Dokumen Lama Bahasa Indonesia Berbasis Mini PC

Main Article Content

Rifki Suwandi Werman Kasoep Ramon Luthvi Destria

Abstract

In the digital era, preserving old documents to prevent damage is a significant challenge. One solution to this problem is to reconstruct damaged or lost documents using image processing and natural language processing technologies. This article discusses the design of a tool for correcting and reconstructing writing in old papers and documents that can be implemented on a mini PC. The tool uses state-of-the-art algorithms such as Convolutional Neural Network (CNN) for character recognition and Optical Character Recognition (OCR), as well as Image Inpainting and Sequence-to-Sequence (Seq2Seq) algorithms for document reconstruction. Test results show that this tool can recognize characters with high accuracy and reconstruct damaged or lost documents effectively.

Downloads

Download data is not yet available.

Article Details

How to Cite
Suwandi, R., Kasoep, W., & Destria, R. (2023, March 31). Alat Koreksi dan Rekontruksi Tulisan pada Dokumen Lama Bahasa Indonesia Berbasis Mini PC. JITCE (Journal of Information Technology and Computer Engineering), 7(01), 34-39. https://doi.org/https://doi.org/10.25077/jitce.7.01.34-39.2023
Section
Articles

References

[1] Rehman, S. U., Shahzad, F., & Jafar, M. A. “Restoration of Damaged or Missing Text in Ancient Manuscripts Using Image Inpainting and OCR”. Journal of Imaging, 5(2), 22. 2019.

[2] Li, H., Chen, Z., Zhang, Z., & Zhang, H. “Document Image Restoration and Recognition: A Survey”. Journal of Imaging, 6(4), 46. 2020.

[3] Shi, W., Zhang, X., Wang, Y., & Gao, H. “Sequence-to-Sequence Based Document Image Rectification”. IEEE Transactions on Image Processing, 29, 6388-6398. 2020.

[4] Suryani, E., Iqbal, M., & Kurniawan, R. Perancangan Alat Koreksi dan Rekonstruksi Tulisan pada Makalah dan Dokumen Lama Berbasis Mini PC. Jurnal Informatika, 1(1), 1-10. 2022.

[5] Zhang, Y., Yan, H., Liu, Z., & Zhang, W. “An Image Restoration Method Based on Deep Learning and Inpainting for Ancient Document”. IEEE Access, 9, 17061-17071.2021.

[6] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. “You only look once: Unified, real-time object detection”. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. pp. 779-788

[7] Karpathy, A., & Fei-Fei, L. “Deep visual-semantic alignments for generating image descriptions”. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. pp. 3128-3137.

[8] Goodfellow, I., Bengio, Y., & Courville, A. Deep learning. MIT press. 2016.

[9] LeCun, Y., Bengio, Y., & Hinton, G. Deep learning. Nature, 521(7553), 436-444. 2015.

[10] He, K., Zhang, X., Ren, S., & Sun, J. “Deep residual learning for image recognition”. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. pp. 770-778.

[11] Simonyan, K., & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. 2014.

[12] Bahdanau, D., Cho, K., & Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473. 2014.

[13] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. pp. 1-9.

[14] Turgut, H. Optical Character Recognition for Historical Documents. Procedia Computer Science, 176, 292-299. 2020.

[15] Hong, S., Baek, J., Kim, J., & Lee, H. “Text Recognition in the Wild: A Survey”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(3), 770-788. 2020.

[16] Sutskever, I., Vinyals, O., & Le, Q. V. Sequence to Sequence Learning with Neural Networks. Advances in Neural Information Processing Systems, 27, 3104-3112. 2014.

[17] Cho, K., Van Merriënboer, B., Gulcehre, C., Bougares, F., Schwenk, H., & Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv preprint arXiv:1406.1078. 2014.

[18] Chen, C., Chen, Y., Yang, J., & Lai, M. Design and Implementation of a Portable Device for the Correction and Reconstruction of Historical Documents Based on a Mini PC. Applied Sciences, 9(13), 2767. 2019.

[19] Chu, C. T., Kim, S. K., Lin, Y. A., Yu, Y., Bradski, G. R., & Ng, A. Y. “Video search results using text queries”. Proceedings of the 2007 ACM SIGMOD international conference on Management of data, 923-934. 2007.