Rancang Bangun Instrumentasi Elektrokardiograf (EKG) dan Klasifikasi Kenormalan Jantung Pada Pola Sinyal EKG Menggunakan Learning Vector Quantization (LVQ)

Main Article Content

Maulana Maulana Hendrick Hendrick Ratna Aisuwarya

Abstract

Electrocardiograph (ECG) is a recorder of human heart signals with signal output on a monitor or graph paper. The ECG records the measurement of the electrical activity of the heart from the surface of the body by a set of electrodes that are installed in such a way that reflects the tapping point activity. The pattern of ECG output signals in one heartbeat produces a pattern with a peak point P, Q, R, S and T or QRS complex. ECG signal waveform results were analyzed using Learning Vector Quantization (LVQ) Artificial Neural Networks, and grouped into two classes, namely normal and abnormal heart patterns. The normal heart condition that is trained is a medically normal heart categorized as healthy as 10 data, while an abnormal heart (Heart, Coronary Heart, and Aortic Regurgutation) is 20 data. The LVQ method recognizes the input pattern based on the proximity of the two vectors, namely the vector of the input unit or neuron with the weight vector produced by each class. Online LVQ identification (using ECG) recorded from 25 direct trials resulted in 80% accuracy.

Downloads

Download data is not yet available.

Article Details

How to Cite
Maulana, M., Hendrick, H., & Aisuwarya, R. (2018, March 29). Rancang Bangun Instrumentasi Elektrokardiograf (EKG) dan Klasifikasi Kenormalan Jantung Pada Pola Sinyal EKG Menggunakan Learning Vector Quantization (LVQ). JITCE (Journal of Information Technology and Computer Engineering), 2(01), 19-26. https://doi.org/https://doi.org/10.25077/jitce.2.01.19-26.2018
Section
Articles

References

1. Basaruddin, T, dkk. 2011. Klasifikasi Beat
Aritmia Pada Siyal EKG Menggunakan Fuzzy

Wavelet Learning Vector Quantization. Universitas Negeri Surabaya, Surabaya.

2. Darmawansyah, dkk. 2006. Pembuatan Elektrokardiograf (EKG) Teknologi Hibrid Menggunakan Komponen Surface Mounting Device (SMD). Jurnal. Universitas Gadjah Mada. Yogyakarta.

3. Fitrian, Nur. 2007. Bab II. Skripsi.
Universitas Sumatera Utara, Medan.

4. Hidayati, Nurul, Budi Warsito. Prediksi Terjangkitnya Penyakit Jantung Dengan Metode Learning Vector Quantization.2010. Universitas Diponegoro, Semarang.

5. http://www.forumsains.com/artikel/94/?print
diakses tanggal 10 September 2013

6. Purnamasari, Rita, dkk. Perhitungan Denyut Jantung Berdasarkan Sinyal EKG Berbasis FPGA. Jurnal. Institut Teknologi Telkom. Bandung.

7. Rahmat. 2009. Perancangan dan Realisasi Elektrokardiograf Menggunakan Jaringan Syaraf Tiruan Untuk Identifikasi Kelainan Jantung. Jurnal. Politeknik Negeri Padang. Padang.