Identifikasi Halitosis Berdasarkan Tingkatan Berbasis Sensor Gas Menggunakan Metode Learning Vector Quantization

Main Article Content

Dodon Yendri Anisa Irviana Andrizal Andrizal

Abstract

Diabetes mellitus and gastric infections can be detected through bad breath bad breath (halitosis). Halitosis is a condition where the smell of bad breath occurs when a person exhales (usually smells when talking). This study aims to create an oral health identification and classification system (halitosis). TGS-2602 gas sensor will detect gas levels in the mouth of the patient, and send data in the form of an analog signal to the ATmega 328 microcontroller. By programming the data read on the Raspberry Pi, the data from the microcontroller is stored in a file and then the data is processed using the Fast Fourier Transform method. (FFT) so that the desired data pattern is obtained. The data pattern of the Fast Fourier Transform (FFT) output will be used as input data on the Learning Vector Quantization (LVQ) neural network method. System testing is done to people with halitosis and not halitosis bad breath. The results showed that the percentage success rate of sensor responses to mild halitosis samples was 25%, moderate halitosis samples were 50%, acute Halitosis samples were 50% and non-halitosis samples were 100%.

Downloads

Download data is not yet available.

Article Details

How to Cite
Yendri, D., Irviana, A., & Andrizal, A. (2017, March 20). Identifikasi Halitosis Berdasarkan Tingkatan Berbasis Sensor Gas Menggunakan Metode Learning Vector Quantization. JITCE (Journal of Information Technology and Computer Engineering), 1(01), 35-47. https://doi.org/https://doi.org/10.25077/jitce.1.01.35-47.2017
Section
Articles

References

Alee, Ranjam. 2013. Reading Data From a Digital Multimeter Using Raspberry Pi. Turku University Of Applied Sciences.
Anonim. Tanpa tahun. Gas Sensor TGS 2602, http://www.figarosensor.com/. Diakses tanggal 19 Februari 2015
Anonim. Tanpa tahun. Gas Sensor TGS 2602, http://www.figarosensor.com/. Diakses tanggal 19 Februari 2015
Gunardi, Indrayadi, Yuniardini S Wimardhani. 2009. Oral Probiotik: Pendekatan Baru
Nasir, M, Syahroni, M, Pengujian Kualitas Sidik Jari Kotor Menggunakan Learning Vector Quantization (LVQ) Jurusan Teknik Elektro Politeknik Negri Lhokseumawe.
OhO, T., Yoshida, Y., Shimazaki, Y., Yamashita, Y., Koga, T. 2001. Characteristics of patients complaining of halitosis and the usefulness of gas chromatography for diagnosing halitosis. Fukuoka Japan Kyushu University. Vol. 91 No. 5 May 2001.
Putra, D.A. 2013. Identifikasi Penyakit Halitosis dengan Sensor Gas menggunakan Jaringan Syaraf Tiruan Metode Pembelajaran Backpropagation.Sistem Komputer Fakultas Teknologi Informasi Universitas Andalas.
Widagdo, Yanuaris, Suntya, Krisna. Volatile Sulfure Compounds sebagai penyebab halitosis. Fakultas Kedokteran Gigi Universitas Mahasaraswati Denpasar.
Tallamma, F, Efektifitas Ekstrak Daun Kemangi (Ocimim Basilicium L) Terhadap Penurunan Kadar Volatile Sulfure Compounds (VSCS) Fakultas Kedokteran Gigi Universitas Hasanuddin Makassar.