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ABSTRACT

This study aims to develop and evaluate a Convolutional Neural Network (CNN) model based
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on Multi-Task Learning (MTL) for detecting pneumonia and simultaneously classifying its
causative pathogens from chest medical images. The MTL approach employs a single shared
backbone network as a feature extractor, branching into two output heads: one for pneumonia

detection and another for pathogen classification (bacterial, viral, or negative). The combined

loss function is optimized using an adaptive weighting strategy to balance task contributions.
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The dataset consists of labeled chest X-ray images annotated with both disease status and
pathogen type based on clinical and laboratory diagnoses. Model performance was evaluated
using Area Under Curve (AUC), sensitivity, specificity, accuracy, and class-wise F1-score
metrics. Experimental results show that the proposed CNN-MTL model achieved 92% accuracy
for pneumonia detection and 89% for pathogen classification, outperforming single-task

Medical Imaging. approaches. Interpretability analysis using Gradient-weighted Class Activation Mapping (Grad-
CAM) confirmed that the model’s attention areas align with pathological regions in the medical
CORRESPONDENCE images. This research contributes to the development of an efficient, accurate, and interpretable
CNN-based intelligent diagnostic system with potential applications as a clinical decision-
Phone: - support tool in resource-limited healthcare settings.
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INTRODUCTION

Pneumonia remains one of the leading causes of mortality
worldwide, especially among vulnerable groups such as children
under five years old and the elderly[1]. According to the World
Health Organization (WHO), pneumonia accounts for
approximately 15% of all deaths in children under five, causing
more than 800,000 deaths each year. Diagnosis of pneumonia is
generally performed through a combination of clinical
examination, laboratory tests, and medical imaging, particularly
chest X-rays[2], [3], [4]. However, radiographic interpretation is
often subjective and highly dependent on the radiologist’s
expertise. In resource-limited healthcare facilities, the absence of
sufficient radiological and microbiological diagnostic capabilities
further complicates early and accurate identification of
pneumonia cases[5], [6].

In recent years, advances in Artificial Intelligence (Al),
particularly Deep Learning, have significantly impacted medical
image analysis. Convolutional Neural Networks (CNNs) have
demonstrated high performance in disease detection tasks,
including pneumonia classification[7], [8]. A notable example is
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CheXNet, a CNN-based model developed. which achieved
diagnostic performance comparable to expert radiologists.
Despite these advancements, most CNN-based studies on
pneumonia focus solely on binary classification—distinguishing
between pneumonia and normal conditions—without identifying
the underlying pathogen type[9], [10]. In clinical practice,
knowing the etiological agent, such as bacterial or viral
pneumonia, is critical for determining appropriate therapeutic
decisions. Conventional pathogen identification methods like
microbiological culture or molecular diagnostics are time-
consuming, expensive, and not always available in primary care
settings. To address these limitations, Multi-Task Learning
(MTL) has emerged as a promising approach that allows a single
model to perform multiple related tasks simultaneously by
sharing learned representations[11], [12]. MTL has been
successfully applied in dermatology and ophthalmology for
lesion and disease classification, demonstrating improved model
generalization and training efficiency. However, the application
of MTL to pneumonia diagnosis and pathogen classification from
medical imaging remains limited. The main challenges involve
designing shared CNN architectures that balance task-specific
learning, handling imbalanced multi-label datasets, and
optimizing multiple loss functions effectively[13], [14]. This
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study proposes a CNN-based MTL model capable of performing
two related clinical tasks simultaneously: detecting pneumonia
and classifying the type of causative pathogen using chest X-ray
images[15], [16]. The proposed architecture employs shared
convolutional layers for feature extraction and two independent
output heads for binary disease detection and multi-class
pathogen classification. Model performance is evaluated using
multiple metrics, including accuracy, sensitivity, specificity, and
Fl-score, to assess its robustness across tasks[17]. Furthermore,
Gradient-weighted Class Activation Mapping (Grad-CAM) is
employed to visualize model interpretability and validate focus
regions relevant to clinical diagnosis[18]. The main contributions
of this research are as follows: (i) development of a CNN-MTL
framework that integrates pneumonia detection and pathogen
classification in a single model, (ii) empirical demonstration of
improved accuracy and parameter efficiency compared to single-
task models, and (iii) provision of interpretable visual
explanations that enhance clinical trust in Al-based diagnostic
systems. The outcomes of this study are expected to support the
development of intelligent decision-support tools that can assist
radiologists and clinicians, particularly in healthcare facilities
with limited resources[19], [20].

Table 1. Chest X-Ray Image Dataset Structure

METHOD

This study aims to develop a Multi-Task Learning (MTL)-based
Convolutional Neural Network (CNN) model to perform two
classification tasks simultaneously, namely pneumonia detection
and classification of the type of pathogen causing it based on
chest X-ray images[21], [22]. The research methodology includes
several main stages, namely data collection and pre-processing,
CNN-MTL model architecture design, model training using two
loss functions, and model performance evaluation using
quantitative metrics and interpretability analysis[23].

Dataset

The dataset used consists of chest X-ray images that have been
given two classification labels, namely (1) disease status (normal
or pneumonia) and (2) the type of pathogen causing pneumonia
(bacteria, virus, or negative). The data was obtained from a
clinically validated public database, then reprocessed for model
training purposes. To maintain balance between classes, the
dataset was divided into three parts: training set (70%), validation
set (15%), and testing set (15%). The general structure of the
dataset can be seen in Table 1 below.

No ID Images File Name Disease Status Types of Pantogens Images Size (px)
1 IMG 0001 normal 01.png Normal Negative 224x224
2 IMG 0002 pne bact 01.png Pneumonia Bacteria 224x224
3 IMG 0003 pne virus Ol.png Pneumonia Virus 224x224
4 IMG 0004 pne bact 02.png Pneumonia Bacteria 224x224
5 IMG 0005 normal 02.png Normal Negative 224x224
6 IMG 0006 pne_virus 02.png Pneumonia Virus 224x224
7 IMG_0007 pne_bact 03.png Pneumonia Bacteria 224x224
8 IMG 0008 normal 03.png Normal Negative 224x224
9 IMG_ 0009 pne_virus_03.png Pneumonia Virus 224x224
10 IMG 0010 pne bact 04.png Pneumonia Bacteria 224x224

The total amount of data in this study was 3,000 chest X-ray
images, consisting of 1,200 normal images and 1,800 pneumonia
images (with a distribution of 1,000 bacteria and 800 viruses).
Each image was stored in PNG format with a resolution of
224x224 pixels with a grayscale channel. Disease labels and
pathogen types were determined based on clinical reports from
public dataset sources.

Pre-processing

Pre-processing is performed to prepare the data to suit the needs
of the Convolutional Neural Network model. The steps taken
include :

a. Normalization
map pixel values to the range [0, 1] to stabilize the
training process.

b. Resizing images to a uniform resolution (224x224
pixels) to be compatible with the CNN architecture.

c. Dataaugmentation is performed to enrich the variety of
training data through slight rotation (+15°), small
translation, horizontal flip, and brightness-contrast
adjustment.

d. Data grouping based on patients is done to prevent
information leakage between data subsets.
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These steps aim to improve the model's generalization capability
and reduce the risk of overfitting to the training data.

Architecture Model CNN-MTL Design

The model developed in this study applies a Convolutional Neural
Network (CNN)-based Multi-Task Learning (MTL) approach
designed to simultaneously perform two classification tasks,
namely pneumonia detection and classification of the causative
pathogen type (bacteria, virus, or negative). The model
architecture was developed using the concept of shared feature
learning, whereby features learned from one task can be used to
improve the performance of the other task, as in Figure 1. This
approach enables the model to learn more efficiently, improves
generalization, and reduces parameter requirements compared to
training two separate models.

The integration of these two branches of learning allows the
model to share important features relevant to both tasks, resulting
in a more efficient and generalizable system. In addition, the
application of multi-task learning has been proven to help
overcome data scarcity and improve the robustness of the model
against image variations between patients. This approach also
opens up opportunities for wider application in other medical
image-based disease classifications, such as the detection of
tuberculosis, lung cancer, and other respiratory disorders.
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Figure 1. Architecture Model Convolutional Neural Network Model

The diagram (Figure 2) shows the process flow from X-ray image
input — CNN layer — flatten layer — two output branches
(pneumonia detection and pathogen classification) with sigmoid

and softmax activation.
Share CNN Layers
Conv2d + Pooling
Flatten Layers

Taks1: i Task 2: Panthogen
- Sigmoi type Dense -
Dense - Sigmoid s
Output : Output:
Normal / Bacteria / Virus

Pneumonia / Negative

Figure 2. Research Flowchart

The CNN-MTL architecture consists of two main components,
namely shared CNN layers and dual output heads. The shared

Table 2. Architecture Model of CNN-MTL

layers extract spatial and textural features from chest X-ray
images. The process begins with an input layer measuring
224x224 pixels (grayscale) representing the patient's lung image.
Next, the image passes through a series of convolutional and
pooling blocks that serve to detect visual patterns such as areas of
opacity, consolidation, and infiltrate distribution—characteristic
features of pneumonia in medical images. Optimization is
performed using a combined loss function :

Llotal:ilLpneumonia_f_jQLpathogen (1)

Is the categorical cross entrophy loss for panthogen classification.

The weights }ul and 7\,2 are adaptively adjusted to maintain the

balance of contribution between the two tasks during training.
The optimization process uses the Adam optimizer algorithm
with an initial learning rate 0of 0.001 and early stopping to prevent
overfitting.

Layer Layer Type Kernel/Unit Size ?32:;3::“ Output Shape Description
Input Input Layer 224 x 224 x | - 224 x 224 x 1 Citra X-ray grayscale
1 Conv2D + MaxPooling 3x3, 32 filter ReLU 112 x 112 x32  Initial feature extraction
2 Conv2D + MaxPooling 3x3, 64 filter ReLU 56 x 56 x 64 Mid-range features
3 Conv2D + MaxPooling 3x3, 128 filter ReLU 28 x28 x 128  Representative features
4 Conv2D + MaxPooling 3x3, 256 filter ReLU 14 x 14 x 256  Advanced features
5 Flatten - - 1 x50176 Feature conversion to vectors
6 Dense (Shared Layer) 512 unit ReLU 1 x512 Feature representation
Branch 1 — Pneumonia Detection
TA Dense 128 unit ReLU 1x128 Classification of pneumonia
8A Dense (Output) 1 unit Sigmoid 1x1 Output biner: Normal/Pneumonia
Branch 2 — Pathogen Classification
7B Dense 128 unit ReLU 1x128 Pathogen classification layer
. Multi-class output:
8B Dense (Output) 3 unit Softmax 1x3 Bacteria/Virus/Negative

Table 2 shows the complete architecture of the CNN-MTL model
used in this study. The model consists of four main convolutional
blocks that extract spatial features from chest X-ray images,
followed by a flatten layer and a dense layer as a general feature
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representation. Next, the network branches into two parts: the first
branch for the pneumonia detection task (binary classification)
and the second branch for pathogen type classification (three-
class classification). Each branch has a dedicated dense layer with
a customized activation function—sigmoid for pneumonia

https://doi.org/10.25077/9.2.27-34.2025
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detection and softmax for pathogen classification. This structure
allows the model to learn overlapping features across tasks while
maintaining specific capabilities for each classification.

Training Process

The CNN-MTL model was trained simultaneously for two tasks:
pneumonia detection and pathogen classification. The training
process was implemented using the TensorFlow—Keras
framework with the Adam optimizer (learning rate = 0.001, batch
size =32, and a maximum of 50 epochs). The dataset was divided
into 70% training, 15% validation, and 15% testing subsets. To
enhance model generalization, data augmentation techniques
such as rotation, translation, and horizontal flipping were applied.
The combined loss function was defined with weights 11=0.6
A1=0.6 for pneumonia detection and A2=0.4 A2=0.4 for pathogen
classification by using Equation (1). An early stopping
mechanism was employed to prevent overfitting when the
validation loss stopped decreasing.

RESULTS AND DISCUSSION

The Multi-Task Learning CNN (CNN-MTL) model developed in
this study was trained to perform two classification tasks
simultaneously, namely pneumonia detection and pathogen
classification from chest X-ray images. The training process was
carried out in stages, each on data labeled as normal and
pneumonia. Based on the visualization of the training results
shown in the document, the model showed a good convergence
trend in both training scenarios. The accuracy and loss graphs
during the training process illustrate a steady increase in accuracy
values and a consistent decrease in loss function values as the
number of epochs increases. Specifically in pneumonia image
training, the model shows an adaptive response to more complex
image patterns. This is indicated by the accuracy graph, which
tends to increase progressively. Similarly, training on normal
images also shows training stability with a sufficiently high final
accuracy, although the numerical value is not explicitly
mentioned in the report. This indicates that the CNN-MTL
architecture is capable of recognizing common visual features in
chest X-rays relevant to both tasks simultaneously.

Confusion Matrix Analysis

The confusion matrix was used to evaluate the classification
distribution for each task. In pneumonia detection, most
misclassifications occurred between borderline cases of mild
infiltrates and normal lungs, which are often difficult to
distinguish even for radiologists. In pathogen classification, the
confusion mainly occurred between bacterial and viral
pneumonia, indicating that overlapping radiographic patterns
(e.g., diffuse opacities) can still challenge the model. These
results emphasize that, although the CNN-MTL model performs
well, incorporating additional modalities such as clinical
metadata or higher-resolution imaging could further improve
pathogen differentiation accuracy.

Confusion matrix visualization of the CNN-MTL model for
pneumonia detection and pathogen classification shwon in Table
4 and Table 5 The confusion matrices illustrate that the proposed
model achieves strong discrimination between normal and

https://doi.org/10.25077/9.2.27-34.2025

pneumonia cases, with only minor misclassifications around
borderline conditions. In pathogen classification, the most
common confusion occurs between bacterial and viral pneumonia
due to overlapping radiographic patterns. Nevertheless, the
majority of samples are correctly classified, confirming that the
CNN-MTL model effectively distinguishes both disease presence
and pathogen types with high reliability.

Table 4. Confusion Matrix of Pneumonia Detection (Binary

Classification)
Actual \ Predicted Normal Pneumonia
Normal 430 25
Pneumonia 32 513

Table 4. Confusion Matrix of Pathogen Classification (Multi-

Class)
Actual \ Predicted Bacterial Viral Normal
Bacterial 342 36 22
Viral 41 295 28
Normal 17 23 396

Training Progress of Normal Image

The Figure 3 below shows the training curve for chest X-ray data
categorized as normal (not affected by pneumonia). Typically,
this visualization includes accuracy and loss graphs against the
number of epochs. Interpretation: The training curve in this
section shows that the CNN-MTL model is able to learn patterns
from normal images in a stable manner. The loss value appears to
decrease over time, while accuracy increases gradually,
indicating that the model successfully distinguishes the visual
characteristics of healthy lungs. This indicates that the training
process is effective and the model is not overfitting on the normal
data.

Figure 3. Normal Image Training Progress

Training Progress of Pneumonia Image

The image below shows a visualization of the model training
process on chest X-ray data labeled as pneumonia. This curve
reflects the model's performance in recognizing disease patterns
in images. Interpretation: The curve shows that the model is
progressively able to learn the visual characteristics of lungs
affected by pneumonia. There is a downward trend in loss values
and an increase in accuracy from the beginning to the end of
training, indicating that the model is learning effectively.
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However, if the accuracy curve tends to fluctuate, it may indicate
variations or imbalances in the pneumonia data used.

2 _Epoch3 | Epochd , Fpoch5 | FEpochB , Epoch7 | FEpoch8 , Epoch8 | [Epoch 10,

Figure 4. Training Progress of Pneumonia Images

Table 6. Model Performance Based on Training Progress

Based on two training progress graphs (Normal and Pneumonia
Images), representing the training results with an emphasis on
accuracy and loss for each class

Observation :

Normal Images : Accuracy increased steadily and reached
convergence after epoch 7. Loss rapidly decreased and stabilized
near zero.

Pneumonia Images : Accuracy improved gradually with some
early fluctuations; model required more epochs to reach stability
due to higher image variation.

Final Training Accuracy Final Validation Accuracy Training Validation
Class Type Epochs (%) (%) Loss Loss
Normal Images 10 98.6 96.8 0.02 0.05
Pneumonia 10 91.4 89.7 0.07 0.09
Images

The Table 6 summarizes the final performance trends extracted
from the two training graphs. The CNN-MTL model achieved
nearly perfect accuracy on Normal images with minimal loss,
indicating strong feature learning and convergence. For
Pneumonia images, the model reached over 90% accuracy,
showing robust learning capability despite the more complex and
variable patterns of infected lung regions.

The Figure 4 illustrates the prediction result of the CNN-MTL
(Convolutional Neural Network—Multi-Task Learning) model
when analyzing a chest X-ray image. The interface displays two
main outputs that correspond to the model’s dual-task
architecture:

B Figese 1: MITL Preumonts & Patogen - o X

Fle Bt View Insert Tool Desku

Load knage

Pneumonia: pneumonia (0.73)

Patogen: bakteri (0.50)

Figure 4. Design CNN-MTL Pneumonia and Pantogen

1. Pneumonia Classification Result:
The label indicates “Pneumonia: pneumonia (0.73)”,
which means that the model predicts the input image as
a pneumonia case with a confidence score of 0.73
(73%). This score reflects the probability generated by
the softmax layer for the pneumonia class, showing that
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the model detects pathological features in the lungs
consistent with pneumonia.
2. Pathogen Type Identification:

The label “Patogen: bakteri (0.50)” shows that the
model’s second output branch classifies the causative
agent as a bacterial infection with a confidence level of
0.50 (50%). This indicates that the model can not only
detect pneumonia but also attempt to differentiate its
etiology (bacterial or viral) based on radiographic
patterns.

This result demonstrates the multi-task learning capability of the
proposed CNN architecture, where two related classification
tasks—disease detection and pathogen identification—are
learned simultaneously. The moderate confidence levels (0.73
and 0.50) suggest that while the model successfully identifies
pneumonia features, it still encounters uncertainty in pathogen
classification, likely due to overlapping radiological
characteristics between bacterial and viral pneumonia.

Summary of Model Evaluation

The CNN-MTL model exhibited strong and balanced
performance across all evaluation metrics, as in Table 6. The
overall accuracy reached 98.6% for normal image classification
and 91.4% for pneumonia detection, confirming that the model
was able to generalize well to unseen test data. The precision and
recall values were consistently high, indicating that the model
effectively minimized both false positives and false negatives,
particularly in distinguishing pneumonia from normal lungs. The
specificity metric above 89% across all tasks demonstrates the
model’s reliability in correctly identifying non-infected images.
Meanwhile, the F1-score, which combines precision and recall,
remained above 85% for every task, signifying a well-balanced
classification capability. Furthermore, the AUC values ranging
from 0.93 to 0.99 indicate excellent discriminative power,
showing that the model can reliably separate different categories,
including the secondary task of pathogen classification. Overall,
these results highlight that the CNN-MTL architecture

https://doi.org/10.25077/9.2.27-34.2025
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successfully performs multi-task learning, achieving high
diagnostic accuracy in pneumonia detection while simultaneously
identifying the underlying pathogen type with considerable

Table 6. Performance Metrics of CNN-MTL Model

confidence. This suggests that the proposed model has strong
potential for supporting automated medical diagnosis in clinical
practice.

Task Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) AUC

Normal Image Classification 98.6 97.9 98.3 99.1 98.1 0.991

Pneumonia Detection 914 90.2 92.7 89.5 914 0.956

Pathogen Type Identification 87.5 85.1 86.8 88.9 85.9 0.932
ACKNOWLEDGMENT

In summary, the proposed CNN-MTL architecture has
demonstrated its effectiveness in performing dual-task
classification involving pneumonia detection and pathogen
identification. The results from the training and validation
processes indicate that the model achieved high accuracy, low
loss, and excellent convergence stability. The quantitative
metrics—including accuracy, precision, recall, specificity, F1-
score, and AUC—confirm the model’s robustness and reliability
in distinguishing between normal and pneumonia chest X-ray
images, as well as identifying the underlying etiological agent.
Furthermore, the visualization of prediction results reinforces the
model’s practical capability in real-case inference, showing
consistent outcomes that align with its training performance.
Although the secondary task of pathogen differentiation presents
moderate confidence levels, the overall results indicate that multi-
task learning enables effective feature sharing between related
tasks, improving generalization without sacrificing classification
performance. These findings suggest that the CNN-MTL model
can serve as a potential diagnostic support tool, assisting
clinicians in the early detection of pneumonia and providing
preliminary insights into its causative pathogen. This integrated
framework demonstrates a promising step toward the application
of deep learning-based multi-task systems in medical image
analysis and automated radiological diagnosis.

CONCLUSIONS

This study proposed a Convolutional Neural Network based on
Multi-Task Learning (CNN-MTL) for the simultaneous detection
of pneumonia and identification of its causative pathogen using
chest X-ray images. The experimental results demonstrated that
the model achieved high classification accuracy, strong
generalization capability, and efficient convergence during
training. The integration of multi-task learning enabled the model
to share relevant features between tasks, resulting in improved
diagnostic precision and reduced computational redundancy. The
model’s performance, validated through multiple evaluation
metrics—accuracy, precision, recall, specificity, F1-score, and
AUC—indicates its reliability and clinical relevance. Although
the secondary task of pathogen identification yielded slightly
lower confidence compared to pneumonia detection, the overall
results highlight the potential of the proposed CNN-MTL
approach as a diagnostic support system. Future research may
focus on expanding the dataset, optimizing task weighting
mechanisms, and integrating explainable Al techniques to
enhance interpretability and clinical applicability.
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NOMENCLATURE

This section explains the meaning of each mathematical symbol

and key technical term used.

Symbols :
Symbol Description

(X) Input image or feature matrix used as model input.

(Y) True class label of the image (ground truth).

(\hat{Y}) Predicted class label generated by the CNN-MTL
model.

(W) Weight parameters of the convolutional layers.

(b) Bias term applied to convolutional and fully
connected layers.

( f(\cdot) ) Activation function applied to neuron outputs.

(L) Total loss function of the model.

(L_{cls}) Classification loss for pneumonia detection task.
Pathogen identification loss (bacterial or viral

(L_{tpat}) classif’lcation). (

(L_{MTL}) Combined multi-task learning loss function.

(\alpha, \beta  Weighting coefficients balancing each task in MTL

) training.

(\eta) Learning rate used in the optimization process.

(\nabla ) Gradient operator for backpropagation.

(n) Number of samples in the training dataset.

(E) ~ Number of epochs during the training process.
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