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Modulation classification is a core function of cognitive radio, essential for signal identification,
menace assessment, and dynamic spectrum management. Quadrature Amplitude Modulation
(QAM) has become an important modulation scheme used in most civilian and military
applications. However, algorithms developed so far for these purposes have been limited in
classifying higher-order QAM and are also extremely complex. Applications which need to take
real-time critical decision based upon modulation types information require that an automatic
modulation classification (AMC) algorithm is necessarily simple both in cost and in
implementation. This paper, therefore, proposes a novel low-complexity feature-based (FB)
method based on evaluating the square modulus of the baseband demodulated received signal,
as the only discriminating feature, to classify QAM of any modulation order. Results show, in
the presence of combined effects of the carrier phase deviations, timing offset, multipath
interference and AWGN, that all QAM modulation types up to 2048-QAM achieve 100%
classification accuracy at lower than 10 dB of SNR. The classification algorithm is thus robust
in accurately classifying any QAM modulation type even in the presence of combined effects
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of the common distortions on the received modulated signal.

INTRODUCTION

Modulation classification plays a key role in decoding cognitive
radio, signal identification, menace assessment, spectrum senses,
and management, efficient use of available spectrum and increase
in the speed of data transfer. Modulation classifier estimates
characteristics of a radio signal and determines the modulation
type based on these characteristics. These signal characteristics
include the carrier phase deviations, amplitude imbalance, and
internal receiver noise, additive white Gaussian noise, fading and
multipath. The modulation type represents the substantial feature
in modern radio systems to give knowledge on modulation signals
and can be used in decoding both civilian and military
applications such as cognitive radio, signal identification, menace
assessment, spectrum senses, and management, efficient use of
available spectrum and increase in the speed of data transfer [1].

A modulation classifier can be described as a system comprising
of pre-processing, feature processing and classification [2].
Classification algorithms can be divided into two categories:
pattern recognition method, or feature-based (FB) technique,
which relies upon the feature extraction ideas, [3] and decision
theory method, or likelihood-based (LB) technique, which is
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based on maximum likelihood [4]. The LB, which is based on
Bayesian theory, computes the probability functions of all
possible modulation schemes for the received signal and selects
the one with the best likelihood. In theory, LB algorithms based
on ML criterion are computationally expensive and have narrow
applicability, even though it is adjudged the best. Besides, they
often require extensive knowledge all signal parameters which
may be impossible to estimate at the receiver. On the other hand,
the FB which simply finds features that can distinguish different
modulated signals, such as wavelet domain features [5], cyclic
spectrum [6], and high-order statistics [7-8], has a reduced
complexity, which makes it recognized as a viable alternative to
LB techniques [9]. The quality of these features is what
significantly influences the performance of the FB classifier.

The FB are more straightforward, and often require reasonable
SNR to distinguish signal points especially when the number of
signal point increases. Machine learning approach has also been
explored as an FB scheme in which support vector machines
(SVM) [10-11], decision trees [12-13] and neural networks [14-
15] are commonly used to extract features of the signals
automatically for modulation classification. However, high
computational complexity, high recognition times, and extensive
training data may limit real-time application, especially in noisy
channels.
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Deep learning algorithms have recently been developed [16-17],
and are found to outperform traditional machine learning
algorithms in high noise environments. In [18], cascaded feature
fusion in which multiple classifiers such as the high-order
cumulant, decision fusion of decision tree, convolutional neural
network, and support vector machine are all combined in cascade
is used to classify AM, FM, 2 ASK, 2 FSK, 4 FSK, BPSK, QPSK,
8-PSK, 16-PSK, 8-QAM, 16-QAM, 32-QAM and 64-QAM,
achieving only about 93.25% recognition rate for MQAM at
10dB. However, cascading multiple classifiers in cascade in order
to achieve such a performance is prohibiting in real-time
applications. The authors in [19] have used machine learning
algorithms based on the K-Nearest Neighbors (KNN) and
Artificial Neural Networks (ANN) to classify analog and digital
modulations with recognition rates not exceeding 74.7% and
90.5%, respectively; and the recognition for 4-QAM at these rates
were obtained only after SNR of 10dB. The works in [20]
developed an automatic modulation classification based on
artificial neural network (ANN) to classify four types of digital
modulation: BPSK, QPSK, 16-QAM and 64-QAM, in which
their algorithm was claimed to have achieved a recognition
probability of approximately 97-99% in the signal-to-noise ratio
(SNR) range of 7-30 dB for each phase offset value. However,
the time it takes to train the network, as with other machine
learning algorithms, is still a challenge especially at low SNR
values. Applications which need to take real-time critical decision
based upon modulation types information requires that an AMC
algorithm is necessarily simple both in cost and implementation.
Besides, most of the machine learning approaches have not been
able to classify QAM signals beyond 64-QAM. Because with
QAM, the computational complexity increases with increasing
modulation order and will make implementation prohibitive.

Therefore, a novel low-complexity FB method based on
evaluating the square envelope or the square modulus of the
baseband demodulated received signal is proposed, as the only
discriminating feature, to classify QAM of any modulation order.
The method, unlike the LB classifiers; requires no knowledge of
transmitted signal parameters. Unlike pattern-based or machine
learning classifiers, this method requires no constellation
analysis, higher-order statistics, or extensive data training. The
proposed algorithm assumes that the receiver does not have a
priori knowledge of any signal parameter, except that a square-
root-raised cosine (SRRC) filter, as usual with QAM transceivers,
must have been used to pulse shape the message at the transmitter.
The received signal will, first of all, be demodulated with
orthogonal carrier signals and then be simultaneously low-pass
filtered and un-pulse shaped with a matched SRRC filter.
However, the span of and the roll-off factor of the SRRC pulse
shape at the receiver need not exactly match that at the
transmitter. The signal parameter for classification is then
extracted in the presence of signal distortion such as symbol
timing offset, carrier phase offsets, AWGN and multipath
interference. Finally, to confirm the robustness of the proposed
classifier, percentage of classification accuracy is obtained for
different signal distortion over a certain range of SNR values.
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METHOD
Signal and Channel Model

Let the transmitted designated as x(t). This signal during
propagation is distorted by phase deviation @, timing offset T,
multipath impulse response h, and AWGN, and so the received is a
distorted version of x(t) and it will be designated as v(t). At the
receiver, v(t) is first sampled at t = kT, where Ts = T/S, T is the
symbol time and S is the oversampling factor. The sampled signal
v(kTs) is then demodulated with orthogonal digital carrier wave
e~ J(2MfekTy) 4.
z(kTy) = v(kTy)e J (@fckTs)
= {h(kTS)x(kTs — 1)e/ @ (kT)} 1

w(kT,) } e~ J(2mfekTy) 1)
z(kTs) is low-pass filtered and un-pulse shaped by a matched SRRC,
and then appropriately downsampled to baseband signal z[kT] at
symbol time T =1 second. If x[kT] are QAM samples, the
demodulated based samples can be expressed as
z[k] = h[k]si [k — t]cos( @o[k]) — h[k]s,[k —

T]sin( @o[k]) + 2w[k]cos(2rf k)

+j{s1[k — t]h[k]sin( @o[k]) + [s2[k —
tlh[k]cos( Bo[k]) — 2w[k]sin(2rf k)} ?2)

Feature Extraction and Proposed Classifier
The extracted signal parameter from the received signal z[kT] in Eq.
1 is the instantaneous square modulus (square envelope) expressed
as:
[ Y[k]I? = hlk]?(si[k — 7]% + sz [k — 7)) + 4w[k]?
+ 4wlk]h[k] {s1[k — t]cos( Bo[k]) —
salk —tlsin( Bo[k])} ©)

When h = 1 (unity multipath channel), w = 0 (zero gain AWGN
channel) and T = 0 (no timing offset), the square modulus reduces
to

[WIK]I? = s:®[k] + 5,2 [K] )

The best approximation to the largest constellation value is
expressed as

—~ 2
M= ceil(,/max( [YIk]1D)/2 ) )

Where the maximum of the square modulus is first halved and the
square root of it is rounded up towards plus infinity before the
resulting quantity is eventually squared. M is an approximation
that corresponds with the largest constellation value of the
received QAM symbols. This approximation is obtained in the
presence of phase deviations, timing offset, AWGN, flat fading
and multipath interference on the transmitted channel. The actual
modulation order M can then be obtained as
M= Z{round(logZM)} (6)

M, therefore, represents the actual modulation order of a square
QAM such as 4-ary, 16-ary, 64-ary, 256-ary and 1024-ary QAM,
or non-square QAM such as 8-ary, 32-ary, 128-ary, 512-ary and
2048-ary QAM.
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RESULTS AND DISCUSSION

The number of symbols generated is N=1000, the period for each
symbol is T = 1s and the oversampling factoris S = 4 so that the
T — spaced message signals are oversampled with S in order to
satisfy the Nyquist criterion. Similarly, the carrier frequency, f. =
10° Hz is oversampled with S so that the received modulated
passband signal is sampled at sampling rate, f;=4+%
10° samples/sec. The SRRC pulse-shaping filter with energy
of 1 Joule, symbol span L (L = 8), roll-off factor of a = 0.5
(corresponding to 1/2 of the sampling rate) is used at the
transmitter. The received modulated signal is simulated through
an AWGN channel using Matlab built-in function awgn with
varying SNR= {0, 2, ..., 30} dB, is demodulated with orthogonal
carrier waves, and then simultaneously low-pass filtered and un-
pulse shaped using a SRRC with symbol span L (L = 2 * S), roll-
off factor of @ = 1 (corresponding to pure raised cosine) at the
receiver. We analyze the performance of the classifier with respect
to distortions such as phase deviation (frequency offset, initial
phase offset and phase noise), timing offset, multipath
interference and AWGN at various SNR values. For classification
of modulation with different SNR values, we obtain accuracy
percentages by executing algorithm 100 times and calculating the
ratio between correct classification and total number of
executions. When classification is performed in the presence of
AWGN alone (no other distortion), the top plot of Figure 1, for
square QAM, shows that only 256-QAM achieves 100%
classification accuracy at all SNR values under consideration
while 1024-, 64-, 4-, and 16-QAM achieves the 100%
classification accuracy only at 2 dB, 4 dB, 6 dB, and 8 dB,
respectively. However, in the lower plot of figure 1, for the non-
square QAM, it is shown that 100% classification accuracy is
achieved by only 2048-QAM at all SNR values while 128-, 512-,
32-, and 8-QAM achieves the 100% classification accuracy only
at2 dB,4 dB, 4 dB, and 10 dB, respectively. Therefore, under the
effect of awgn only 256-QAM and 2048-QAM prove to be the
most robust modulations in terms of ease of identification.
Although, both the 32-QAM and 512-QAM are distinguishable,
they offer same ease of identification.
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Figure 1. Accuracy Percentage of classification over AWGN
channel only

When phase deviation comprising of phase offset 6, = 1.2,
frequency offset f, = 40,000 Hz at a carrier frequency of f. =
10° Hz and phase noise distribution ¢,(t) are jointly applied to
corrupt the transmitted signal over the AWGN channel, the top plot
of figure 2, for square QAM, shows that only 1024-QAM achieves
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100% classification accuracy at all SNR values, while 256-, 64-, 4-,
and 16-QAM achieves the 100% classification accuracy only at 2
dB, 4 dB, 6 dB, and 8 dB, respectively. However, in the lower plot
of figure 2, for the non-square QAM, it is shown that 100%
classification accuracy is achieved by only 2048-QAM at all SNR
values while 512-,128-, 32-, and 8-QAM achieves the 100%
classification accuracy only at 2 dB, 4 dB, 4 dB, and 10 dB,
respectively. Therefore, under the combined effects of phase
deviations and awgn, higher-order QAM such as 1024-QAM, and
2048-QAM are found to be the most robust modulations in terms of
ease of identification. However, both 128-QAM and 32-QAM offer
similar ease of identification.
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Figure 2. Accuracy Percentage of classification with phase
deviation over AWGN channel

The phase deviation comprising of phase offset 6, = 1.2,
frequency offset f, = 40,000 Hz (40 ppm — parts per million)
at a carrier frequency of f, = 10° Hz, phase noise distribution
¥, (t) and timing offset T = 0.5 are jointly applied to corrupt the
transmitted signal over the AWGN channel. The top plot of figure
3, for square QAM, shows that only 256-QAM achieves 100%
classification accuracy at all SNR, while 1024-, 64-, 4-, and 16-
QAM achieves the 100% classification accuracy only at 2 dB, 4
dB, 6 dB, and 10 dB, respectively. The effect of timing offset only
penalizes the 16-QAM to require additional SNR of 2 dB in order
to achieve the 100% compared to what were obtained in Figure 2.
However, in the lower plot of figure 3, for the non-square QAM,
it is shown that 100% classification accuracy is achieved by only
2048-QAM at all SNR values while 512-,128-, 32-, and 8-QAM
achieves the 100% classification accuracy only at 2 dB, 4 dB, 4
dB, and 10 dB, respectively. Therefore, under the combined
effects of phase deviations, multipath and awgn only higher-order
QAM such as 256-QAM and 2048-QAM are the most robust
modulations in terms of ease of identification. However, both 128-
QAM and 32-QAM offer similar ease of identification.

Figure 4 depicts classification accuracy of QAM signal received
with phase deviation comprising phase offset 6y = 1.2,
frequency offset  f; = 40,000 Hz (40 ppm) at a carrier
frequency of f, = 10° Hz, phase noise ¢, and timing offset T =
0.5 in the presence of mild multipath interference and AWGN at
different SNR, the top plot of figure 4, for square QAM, shows
that 1024-, 256-, 64-, 4-, and 16-QAM achieve the 100%
classification accuracy only at 2 dB , 6 dB, 6 dB, 6 dB, and 16
dB, respectively, requiring additional SNR of 2 dB each for 64-
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QAM and 4-QAM, and 6 dB for 16-QAM to achieve 100%
accuracy of classification.
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Figure 3. Accuracy Percentage of classification with phase
deviation, and timing offset over AWGN channel
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Figure 4. Accuracy Percentage of classification with phase
deviation, timing offset and multipath interference over AWGN
channel

However, in the lower plot of figure 4, for the non-square QAM,
it is shown that 100% classification accuracy is achieved by only
2048-QAM at all SNR values while 512-, 128-, 32-, and 8-QAM
achieves the 100% classification accuracy only at 2 dB, 6 dB, 6
dB, and 16 dB, respectively, requiring additional SNR of 2 dB
each for 128-QAM and 32-QAM, and 6 dB for 8-QAM to achieve
100% accuracy of classification. Therefore, under the combined
effect of phase deviations, timing offset, multipath and awgn only
2048- QAM appears to be the most robust modulations in terms
of ease of identification while penalizing 4-QAM, 32-QAM, 64-
QAM and 128-QAM with additional SNR requirement of 2 dB,
and 8-QAM and 16-QAM with additional SNR requirement of 6
dB.

CONCLUSIONS

In this paper, the square modulus of demodulated received signal, as
the only discriminating feature, in the presence of distortions such as
carrier phase offset, timing offset, multipath interference and
AWGN is extracted as the signal parameter. This parameter is then
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used as the feature for discriminating and classifying the QAM
modulation type. The classifier requires no prior knowledge of the
transmitted signal parameter, except that a SRRC filter, as usual
with QAM signal, must have been used to pulse shape the
message at the transmitter. Therefore, a SRRC length of twice
the length of the oversampling factor is used with a roll-off of 1
(corresponding to pure raised cosine) at the receiver. This makes a
perfect SRRC match unnecessary.

The square modulus is then used to compute the classifier,

which provides a very low complexity in terms of both
computation and time. Results show that when Additive
White Gaussian Noise (AWGN) is the only distortion in the
received signal, 256- and 2048-QAM achieve 100%
classification accuracy while others achieve the 100% at different
SNRs but less than 10 dB. When phase deviations are added to
AWGN to corrupt the transmitted signal, only 1024-QAM, and
2048-QAM can achieve 100% classification accuracy while
others achieve the 100% at different SNRs but still less than 10
dB. When timing offset is added, only 256-QAM and 2048-QAM
achieve 100% classification accuracy while only 16-QAM is
penalized with additional SNR requirement of 2 dB in order to
achieve 100% classification accuracy. Under multipath
conditions, only 2048-QAM maintains 100% classification
accuracy. All other schemes require an additional 2 dB (4, 32, 64,
128-QAM) or 6 dB (8, 16-QAM) of SNR to achieve perfect
accuracy.

Generally, the results show that even in the presence of all the
distortions, 100% classification accuracy is achieved for all QAM
modulation types below 10 dB of SNR. Therefore, the classification
algorithm is not only of low complexity, it is robust in accurately
classifying any QAM modulation even in the presence of combined
effects of the carrier phase deviations, timing offset, multipath
interference and AWGN on the received modulated signal.
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