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Modulation classification is a core function of cognitive radio, essential for signal identification, 

menace assessment, and dynamic spectrum management. Quadrature Amplitude Modulation 

(QAM) has become an important modulation scheme used in most civilian and military 

applications. However, algorithms developed so far for these purposes have been limited in 

classifying higher-order QAM and are also extremely complex. Applications which need to take 

real-time critical decision based upon modulation types information require that an automatic 

modulation classification (AMC) algorithm is necessarily simple both in cost and in 

implementation. This paper, therefore, proposes a novel low-complexity feature-based (FB) 

method based on evaluating the square modulus of the baseband demodulated received signal, 

as the only discriminating feature, to classify QAM of any modulation order. Results show, in 

the presence of combined effects of the carrier phase deviations, timing offset, multipath 

interference and AWGN, that all QAM modulation types up to 2048-QAM achieve 100% 

classification accuracy at lower than 10 dB of SNR. The classification algorithm is thus robust 

in accurately classifying any QAM modulation type even in the presence of combined effects 

of the common distortions on the received modulated signal. 
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INTRODUCTION 

Modulation classification plays a key role in decoding cognitive 

radio, signal identification, menace assessment, spectrum senses, 

and management, efficient use of available spectrum and increase 

in the speed of data transfer. Modulation classifier estimates 

characteristics of a radio signal and determines the modulation 

type based on these characteristics. These signal characteristics 

include the carrier phase deviations, amplitude imbalance, and 

internal receiver noise, additive white Gaussian noise, fading and 

multipath. The modulation type represents the substantial feature 

in modern radio systems to give knowledge on modulation signals 

and can be used in decoding both civilian and military 

applications such as cognitive radio, signal identification, menace 

assessment, spectrum senses, and management, efficient use of 

available spectrum and increase in the speed of data transfer [1]. 

 

A modulation classifier can be described as a system comprising 

of pre-processing, feature processing and classification [2]. 

Classification algorithms can be divided into two categories: 

pattern recognition method, or feature-based (FB) technique, 

which relies upon the feature extraction ideas, [3] and decision 

theory method, or likelihood-based (LB) technique, which is 

based on maximum likelihood [4].  The LB, which is based on 

Bayesian theory, computes the probability functions of all 

possible modulation schemes for the received signal and selects 

the one with the best likelihood. In theory, LB algorithms based 

on ML criterion are computationally expensive and have narrow 

applicability, even though it is adjudged the best. Besides, they 

often require extensive knowledge all signal parameters which 

may be impossible to estimate at the receiver. On the other hand, 

the FB which simply finds features that can distinguish different 

modulated signals, such as wavelet domain features [5], cyclic 

spectrum [6], and high-order statistics [7-8], has a reduced 

complexity, which makes it recognized as a viable alternative to 

LB techniques [9]. The quality of these features is what 

significantly influences the performance of the FB classifier. 

 

The FB are more straightforward, and often require   reasonable 

SNR to distinguish signal points especially when the number of 

signal point increases. Machine learning approach has also been 

explored as an FB scheme in which support vector machines 

(SVM) [10-11], decision trees [12-13] and neural networks [14-

15] are commonly used to extract features of the signals 

automatically for modulation classification. However, high 

computational complexity, high recognition times, and extensive 

training data may limit real-time application, especially in noisy 

channels. 
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Deep learning algorithms have recently been developed [16-17], 

and are found to outperform traditional machine learning 

algorithms in high noise environments. In [18], cascaded feature 

fusion in which multiple classifiers such as the high-order 

cumulant, decision fusion of decision tree, convolutional neural 

network, and support vector machine are all combined in cascade 

is used to classify AM, FM, 2 ASK, 2 FSK, 4 FSK, BPSK, QPSK, 

8-PSK, 16-PSK, 8-QAM, 16-QAM, 32-QAM and 64-QAM, 

achieving only about 93.25% recognition rate for MQAM at 

10dB. However, cascading multiple classifiers in cascade in order 

to achieve such a performance is prohibiting in real-time 

applications. The authors in [19] have used machine learning 

algorithms based on the K-Nearest Neighbors (KNN) and 

Artificial Neural Networks (ANN) to classify analog and digital 

modulations with recognition rates not exceeding 74.7% and 

90.5%, respectively; and the recognition for 4-QAM at these rates 

were obtained only after SNR of 10dB. The works in [20] 

developed an automatic modulation classification based on 

artificial neural network (ANN) to classify four types of digital 

modulation: BPSK, QPSK, 16-QAM and 64-QAM, in which 

their algorithm was claimed to have achieved a recognition 

probability of approximately 97-99% in the signal-to-noise ratio 

(SNR) range of 7-30 dB for each phase offset value. However, 

the time it takes to train the network, as with other machine 

learning algorithms, is still a challenge especially at low SNR 

values. Applications which need to take real-time critical decision 

based upon modulation types information requires that an AMC 

algorithm is necessarily simple both in cost and implementation. 

Besides, most of the machine learning approaches have not been 

able to classify QAM signals beyond 64-QAM. Because with 

QAM, the computational complexity increases with increasing 

modulation order and will make implementation prohibitive. 

 

Therefore, a novel low-complexity FB method based on 

evaluating the square envelope or the square modulus of the 

baseband demodulated received signal is proposed, as the only 

discriminating feature, to classify QAM of any modulation order. 

The method, unlike the LB classifiers; requires no knowledge of 

transmitted signal parameters. Unlike pattern-based or machine 

learning classifiers, this method requires no constellation 

analysis, higher-order statistics, or extensive data training.  The 

proposed algorithm assumes that the receiver does not have a 

priori knowledge of any signal parameter, except that a square-

root-raised cosine (SRRC) filter, as usual with QAM transceivers, 

must have been used to pulse shape the message at the transmitter. 

The received signal will, first of all, be demodulated with 

orthogonal carrier signals and then be simultaneously low-pass 

filtered and un-pulse shaped with a matched SRRC filter. 

However, the span of and the roll-off factor of the SRRC pulse 

shape at the receiver need not exactly match that at the 

transmitter. The signal parameter for classification is then 

extracted in the presence of signal distortion such as symbol 

timing offset, carrier phase offsets, AWGN and multipath 

interference. Finally, to confirm the robustness of the proposed 

classifier, percentage of classification accuracy is obtained for 

different signal distortion over a certain range of SNR values. 

 

METHOD 

Signal and Channel Model 

Let the transmitted designated as 𝑥(𝑡). This signal during 

propagation is distorted by phase deviation ∅0, timing offset 𝜏, 

multipath impulse response ℎ, and AWGN, and so the received is a 

distorted version of  𝑥(𝑡)  and it will be designated as 𝑣(𝑡).  At the 

receiver, 𝑣(𝑡) is first sampled at   𝑡 = 𝑘𝑇𝑠, where 𝑇𝑠 = 𝑇/𝑆,  𝑇 is the 

symbol time and 𝑆 is the oversampling factor. The sampled signal 

𝑣(𝑘𝑇𝑠) is then demodulated with orthogonal digital carrier wave 

𝑒−𝑗(2𝜋𝑓𝑐𝑘𝑇𝑠) as: 

 𝑧(𝑘𝑇𝑠) = 𝑣(𝑘𝑇𝑠)𝑒−𝑗(2𝜋𝑓𝑐𝑘𝑇𝑠) 

              = {ℎ(𝑘𝑇𝑠)𝑥(𝑘𝑇𝑠 − 𝜏)𝑒𝑗{∅0(𝑘𝑇𝑠)} +

                           𝑤(𝑘𝑇𝑠) } 𝑒−𝑗(2𝜋𝑓𝑐𝑘𝑇𝑠)                                          (1)             

𝑧(𝑘𝑇𝑠) is low-pass filtered and un-pulse shaped by a matched SRRC, 

and then appropriately downsampled to baseband signal 𝑧[𝑘𝑇] at 

symbol time 𝑇 = 1 second. If 𝑥[𝑘𝑇] are QAM samples, the 

demodulated based samples can be expressed as  

 𝑧[𝑘] = ℎ[𝑘]𝑠1[𝑘 − 𝜏]𝑐𝑜𝑠( ∅0[𝑘]) − ℎ[𝑘]𝑠2[𝑘 −

                          𝜏]𝑠𝑖𝑛( ∅0[𝑘]) + 2𝑤[𝑘]𝑐𝑜𝑠(2𝜋𝑓𝑐𝑘)                                                                      

                 +𝑗{𝑠1[𝑘 − 𝜏]ℎ[𝑘]𝑠𝑖𝑛( ∅0[𝑘]) + [𝑠2[𝑘 −

                             𝜏]ℎ[𝑘]𝑐𝑜𝑠( ∅0[𝑘]) − 2𝑤[𝑘]𝑠𝑖𝑛(2𝜋𝑓𝑐𝑘)}        (2)   

 

Feature Extraction and Proposed Classifier  

The extracted signal parameter from the received signal 𝑧[𝑘𝑇] in Eq. 

1 is the instantaneous square modulus (square envelope) expressed 

as:  

| 𝜓[𝑘]|2 = ℎ[𝑘]2(𝑠1[𝑘 − 𝜏]2 + 𝑠2[𝑘 − 𝜏]2) + 4𝑤[𝑘]2       

                    + 4𝑤[𝑘]ℎ[𝑘] {𝑠1[𝑘 − 𝜏]𝑐𝑜𝑠( ∅0[𝑘]) −

                                                          𝑠2[𝑘 − 𝜏]𝑠𝑖𝑛( ∅0[𝑘])}             (3) 

 

When ℎ = 1 (unity multipath channel),  𝑤 = 0 (zero gain AWGN 

channel) and 𝜏 = 0 (no timing offset), the square modulus reduces 

to 

 | 𝜓[𝑘]|2 = 𝑠1
2[𝑘] + 𝑠2

2[𝑘]                                                       (4)                                                                                                                                               

 

The best approximation to the largest constellation value is 

expressed as  

                     𝑀̂ = 𝑐𝑒𝑖𝑙(√𝑚𝑎𝑥( | 𝜓[𝑘]|2) 2 ⁄ )
2
                        (5)                                                                                                                                  

 

Where the maximum of the square modulus is first halved and the 

square root of it is rounded up towards plus infinity before the 

resulting quantity is eventually squared. 𝑀̂ is an approximation 

that corresponds with the largest constellation value of the 

received QAM symbols. This approximation is obtained in the 

presence of phase deviations, timing offset, AWGN, flat fading 

and multipath interference on the transmitted channel. The actual 

modulation order 𝑀 can then be obtained as 

                       𝑀 = 2{𝑟𝑜𝑢𝑛𝑑(𝑙𝑜𝑔2𝑀̂)}                                         (6)                                                                             

          

M, therefore, represents the actual modulation order of a square 

QAM such as 4-ary, 16-ary, 64-ary, 256-ary and 1024-ary QAM, 

or non-square QAM such as 8-ary, 32-ary, 128-ary, 512-ary and 

2048-ary QAM. 
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RESULTS AND DISCUSSION 

The number of symbols generated is N=1000, the period for each 

symbol is 𝑇 = 1𝑠 and the oversampling factor is 𝑆 = 4 so that the 

𝑇 − spaced message signals are oversampled with 𝑆 in order to 

satisfy the Nyquist criterion. Similarly, the carrier frequency, 𝑓𝑐 =

109 𝐻𝑧 is oversampled with 𝑆 so that the received modulated 

passband signal is sampled at sampling rate, 𝑓𝑠 = 4 ∗

109  𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑠𝑒𝑐⁄ . The SRRC pulse-shaping filter with energy 

of 1 Joule, symbol span L (L = 8), roll-off factor of 𝛼 = 0.5 

(corresponding to 1 2⁄  of the sampling rate) is used at the 

transmitter. The received modulated signal is simulated through 

an AWGN channel using Matlab built-in function awgn with 

varying SNR= {0, 2, …, 30} dB, is demodulated with orthogonal 

carrier waves, and then simultaneously low-pass filtered and un-

pulse shaped using a SRRC with symbol span L (L = 2 ∗ S), roll-

off factor of 𝛼 = 1 (corresponding to pure raised cosine) at the 

receiver. We analyze the performance of the classifier with respect 

to distortions such as phase deviation (frequency offset, initial 

phase offset and phase noise), timing offset, multipath 

interference and AWGN at various SNR values. For classification 

of modulation with different SNR values, we obtain accuracy 

percentages by executing algorithm 100 times and calculating the 

ratio between correct classification and total number of 

executions.    When classification is performed in the presence of 

AWGN alone (no other distortion), the top plot of Figure 1, for 

square QAM, shows that only 256-QAM achieves 100% 

classification accuracy at all SNR values under consideration 

while 1024-, 64-, 4-, and 16-QAM achieves the 100% 

classification accuracy only at 2 dB, 4 dB, 6 dB, and 8 dB, 

respectively. However, in the lower plot of figure 1, for the non-

square QAM, it is shown that 100% classification accuracy is 

achieved by only 2048-QAM at all SNR values while 128-, 512-, 

32-, and 8-QAM achieves the 100% classification accuracy only 

at 2 dB, 4 dB, 4 dB, and 10 dB, respectively. Therefore, under the 

effect of awgn only 256-QAM and 2048-QAM prove to be the 

most robust modulations in terms of ease of identification. 

Although, both the 32-QAM and 512-QAM are distinguishable, 

they offer same ease of identification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Accuracy Percentage of classification over AWGN 

channel only 

 

When phase deviation comprising of phase offset 𝜃0 = 1.2, 

frequency offset  𝑓0 = 40,000 𝐻𝑧  at a carrier frequency of 𝑓𝑐 =

109 𝐻𝑧 and phase noise distribution 𝜑𝑜(𝑡) are jointly applied to 

corrupt the transmitted signal over the AWGN channel, the top plot 

of figure 2, for square QAM, shows that only 1024-QAM achieves 

100% classification accuracy at all SNR values, while 256-, 64-, 4-, 

and 16-QAM achieves the 100% classification accuracy only at 2 

dB, 4 dB, 6 dB, and 8 dB, respectively. However, in the lower plot 

of figure 2, for the non-square QAM, it is shown that 100% 

classification accuracy is achieved by only 2048-QAM at all SNR 

values while 512-,128-, 32-, and 8-QAM achieves the 100% 

classification accuracy only at 2 dB, 4 dB, 4 dB, and 10 dB, 

respectively. Therefore, under the combined effects of phase 

deviations and awgn, higher-order QAM such as 1024-QAM, and 

2048-QAM are found to be the most robust modulations in terms of 

ease of identification. However, both 128-QAM and 32-QAM offer 

similar ease of identification. 

 

Figure 2. Accuracy Percentage of classification with phase 

deviation over AWGN channel 

 

The phase deviation comprising of phase offset 𝜃0 = 1.2, 

frequency offset 𝑓0 = 40,000 𝐻𝑧 (40 𝑝𝑝𝑚 − parts per million) 

at a carrier frequency of 𝑓𝑐 = 109 𝐻𝑧,  phase noise distribution 

𝜑𝑜(𝑡) and timing offset 𝜏 = 0.5  are jointly applied to corrupt the 

transmitted signal over the AWGN channel.  The top plot of figure 

3, for square QAM, shows that only 256-QAM achieves 100% 

classification accuracy at all SNR, while 1024-, 64-, 4-, and 16-

QAM achieves the 100% classification accuracy only at 2 dB, 4 

dB, 6 dB, and 10 dB, respectively. The effect of timing offset only 

penalizes the 16-QAM to require additional SNR of 2 dB in order 

to achieve the 100% compared to what were obtained in Figure 2. 

However, in the lower plot of figure 3, for the non-square QAM, 

it is shown that 100% classification accuracy is achieved by only 

2048-QAM at all SNR values while 512-,128-, 32-, and 8-QAM 

achieves the 100% classification accuracy only at 2 dB, 4 dB, 4 

dB, and 10 dB, respectively. Therefore, under the combined 

effects of phase deviations, multipath and awgn only higher-order 

QAM such as 256-QAM and 2048-QAM are the most robust 

modulations in terms of ease of identification. However, both 128-

QAM and 32-QAM offer similar ease of identification.  

 

Figure 4 depicts classification accuracy of QAM signal received 

with phase deviation comprising phase offset 𝜃0 = 1.2, 

frequency offset  𝑓0 = 40,000 𝐻𝑧 (40 𝑝𝑝𝑚) at a carrier 

frequency of 𝑓𝑐 = 109 𝐻𝑧,  phase noise 𝜑𝑜 and timing offset 𝜏 =

0.5 in the presence of mild multipath interference and AWGN at 

different SNR, the top plot of figure 4, for square QAM, shows 

that 1024-, 256-, 64-, 4-, and 16-QAM achieve the 100% 

classification accuracy only at 2 dB , 6 dB, 6 dB, 6 dB, and 16 

dB, respectively, requiring additional SNR of 2 dB each for 64-
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QAM and 4-QAM, and 6 dB for 16-QAM  to achieve 100% 

accuracy of classification.  

Figure 3. Accuracy Percentage of classification with phase 

deviation, and timing offset over AWGN channel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Accuracy Percentage of classification with phase 

deviation, timing offset and multipath interference over AWGN 

channel 

 

However, in the lower plot of figure 4, for the non-square QAM, 

it is shown that 100% classification accuracy is achieved by only 

2048-QAM at all SNR values while 512-, 128-, 32-, and 8-QAM 

achieves the 100% classification accuracy only at 2 dB, 6 dB, 6 

dB, and 16 dB, respectively, requiring additional SNR of 2 dB 

each for 128-QAM and 32-QAM, and 6 dB for 8-QAM to achieve 

100% accuracy of classification. Therefore, under the combined 

effect of phase deviations, timing offset, multipath and awgn only 

2048- QAM appears to be the most robust modulations in terms 

of ease of identification while penalizing 4-QAM, 32-QAM, 64-

QAM and 128-QAM with additional SNR requirement of 2 dB, 

and 8-QAM and 16-QAM with additional SNR requirement of 6 

dB. 

 

CONCLUSIONS 

In this paper, the square modulus of demodulated received signal, as 

the only discriminating feature, in the presence of distortions such as 

carrier phase offset, timing offset, multipath interference and 

AWGN is extracted as the signal parameter. This parameter is then 

used as the feature for discriminating and classifying the QAM 

modulation type. The classifier requires no prior knowledge of the 

transmitted signal parameter, except that a SRRC filter, as usual 

with QAM signal, must have been used to pulse shape the 

message at the transmitter. Therefore, a SRRC length of twice 

the length of the oversampling factor is used with a roll-off of 1 

(corresponding to pure raised cosine) at the receiver. This makes a 

perfect SRRC match unnecessary.  

 

 The square modulus is then used to compute the classifier, 

which provides a very low complexity in terms of both 

computation and time. Results show that when Additive 

White Gaussian Noise (AWGN) is the only distortion in the 

received signal, 256- and 2048-QAM achieve 100% 

classification accuracy while others achieve the 100% at different 

SNRs but less than 10 dB. When phase deviations are added to 

AWGN to corrupt the transmitted signal, only 1024-QAM, and 

2048-QAM can achieve 100% classification accuracy while 

others achieve the 100% at different SNRs but still less than 10 

dB. When timing offset is added, only 256-QAM and 2048-QAM 

achieve 100% classification accuracy while only 16-QAM is 

penalized with additional SNR requirement of 2 dB in order to 

achieve 100% classification accuracy. Under multipath 

conditions, only 2048-QAM maintains 100% classification 

accuracy. All other schemes require an additional 2 dB (4, 32, 64, 

128-QAM) or 6 dB (8, 16-QAM) of SNR to achieve perfect 

accuracy. 

 

Generally, the results show that even in the presence of all the 

distortions, 100% classification accuracy is achieved for all QAM 

modulation types below 10 dB of SNR. Therefore, the classification 

algorithm is not only of low complexity, it is robust in accurately 

classifying any QAM modulation even in the presence of combined 

effects of the carrier phase deviations, timing offset, multipath 

interference and AWGN on the received modulated signal. 
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