
JITCE - VOL. 06 NO. 02 (2022) 50-55

Available online at : http://jitce.fti.unand.ac.id/
JITCE (Journal of Information Technology and Computer Engineering)

| ISSN (Online) 2599-1663 |

https://doi.org/10.25077/jitce.6.02.50-55.2022 Attribution-NonCommercial-ShareAlike 4.0 International. Some rights reserved

Research Paper

Continuous Integration and Continuous Deployment (CI/CD) for Web Applications

on Cloud Infrastructures

Alde Alanda 1, H.A. Mooduto, 1 Rizka Hadelina 2

1 Information Technology Department, Politeknik Negeri Padang, Kampus Limau Manis, Kota Padang 25163, Indonesia
2 Computer Engineering Department, Universitas Andalas, Kampus Limau Manis, Kota Padang 25163, Indonesia

ARTICLE INFORMATION A B S T R A C T

Received: July 22th, 2022

Revised: September 3rd , 2022

Available online: September 30th, 2022

At this time, the application development process has experienced much development in terms

of tools and the programming language used. The application development process is required

to be carried out in a fast process using various existing tools. The application development and

delivery process can be done quickly using Continuous Integration (CI) and Continuous

Delivery (CD). This study uses the CI/CD technique to develop real-time applications using

various programming languages implemented on a cloud infrastructure using the AWS code

pipeline, which focuses on automatic deployment. Application source code is stored on different

media using GitHub and Amazon S3. The source code will be tested for automatic deployment

using the AWS code pipeline. The results of this study show that all programming languages

can be appropriately deployed with an average time of 60 seconds.

KEYWORDS

Continous Integration, Continous Deployment,

Automatic Deployment, AWS

CORRESPONDENCE

Phone: +6281267775707

E-mail: alde@pnp.ac.id

INTRODUCTION

Cloud computing is known for its flexibility and low costs (cost

saving). Cloud computing technology is an effort to minimize the

cost of procuring a fairly large information technology

infrastructure. This technology accelerates the application

production process without having to build infrastructure on a

local network[1]. As cloud technology continues to evolve, the

paradigm for developing and deploying applications in the cloud

has changed not only because of scalability and reliability, but

also because of cloud support for integration and delivery with

minimal downtime[2].

Cloud technology support for application deployment by

implementing the Continuous Integration and Continuous

Deployment (CI/CD) concepts. CI/CD is a concept that functions

to carry out the deployment process automatically which helps in

checking the quality and function of each program that is made

and helps in detecting bugs earlier, making it more effective, and

efficient and saving more time in the process of making an

application[3]. This can help the software industry, achieve high

quality and productivity[4].

One of the most widely used cloud computing provider is

Amazone Web Services (AWS), currently add up to ≈ 50% of the

market share [5]. AWS provides wide range of cloud computing

services that helps in development of a sophisticated application.

Moreover, it has an outstanding performance in cloud computing

because of the its excellent work in the area of security of data

[6].

This study aims to evaluate the implementation of CI/CD

concept, which focuses in automatic deployment of web

application using the AWS code pipeline. The web application

build by various programming language.

CI/CD

Contiuous Integration

Continuous Integration is a practical concept involved in the

principles of application programming. CI states that all the code

for an application should be stored in a common repository every

time the developer checks the code into the repository [2][7]. CI

is a regulator that combines many tools to achieve the objective

of automating the software development process [8]. This phase

is the core of CICD, in which the integration process between

software development and operational processes will be carried

http://jitce.fti.unand.ac.id/
https://doi.org/10.25077/jitce.6.02.50-55.2022
http://creativecommons.org/licenses/by-nc-sa/4.0/

ALDE ALANDA / JITCE - VOL. 06 NO. 02 (2022) 50-55

https://doi.org/10.25077/jitce.6.02.50-55.2022 Alde Alanda 51

out in this section. Each developer's commits must be detected,

even if a bug exists. The tool commonly used is AWS

CodePipeline.

AWS CodePipeline is a continuous delivery service that updates

and provides automated management. It can release new features

to customers in a short period. It reduces the cost and workforce

of system maintenance, giving the brand more time to develop

new projects. CodePipeline helps show the real-time status. The

developer can check the details of any alert and retry the failed

operation, the process is refined into each small part, and there is

no need to start over when encountering errors[9].

Figure 1. CodePipeline workflow [10]

The work process in CodePipeline has several stages: The first

stage of the source will take the code from GitHub and send it as

an artifact to the next stage. The second build stage will use AWS

CodeBuild to build a Docker image from the code artifacts and

save it to the repository. This stage will output the container name

and URL from the image as an artifact to the next stage.

Moreover, finally, the deployment phase will use AWS Elastic

Beanstalk to deploy and update the clusters in the repository to

use the new image URL for the container, as shown in Figure

1[10].

Continuous Deployment

In this phase, the code will be sent to the production server. The

critical thing to note when sending code to a server is that the code

can be used on all servers. The tool used is Elastic Beanstalk.

AWS Elastic Beanstalk is one of the hyped services to host web

applications on the elastic cloud. This service automates the

setup, conFigureuration, and provisioning of other AWS services.

It supports several platform conFigureurations for different web

programming applications, including multiple versions of

programming languages with the application server[11].

Figure 2 illustrates the workflow on Elastic Beanstalk. The source

code to be run is uploaded, in the form of a bundle to Elastic

Beanstalk. Elastic Beanstalk automatically provides the

necessary environment for running the code.

Figure 2. Elastic Beanstalk workflow

Continuous Monitoring

In this phase, information regarding the use of the software needs

to be recorded to identify the proper application functionality.

System errors, such as the security of the system itself, are things

that need to be considered and need to be resolved. The tool

commonly used is Elastic Beanstalk.

System Architecture

The design of the system architecture can be seen in Figure 1. The

system consists of several components:

a) AWS CodePipeline: as an automation server to

implement the CICD concept and carry out the build

process that will be deployed automatically and

displays logs of the deployment process.

b) AWS EC2: as the server on which to deploy the

application code.

c) AWS RDS: to build databases

d) AWS Elastic Beanstalk: as the application deployment

server

e) GitHub: as source location server for application code

or repository management on the API to be deployed

f) Slack: as an application to monitor the update process.

For each successful update, a notification will appear

on the slack channel.

.

Figure.3 System Architecture

The specifications of the software used are:

a) Windows 10 OS for the operating system of the

computer host

b) AWS Code Pipeline v 1.116.0

c) GitHub v1

d) AWS Elastic Beanstalk 2.0.0:

e) MySQL Workbench 8.0.26:

The hardware specifications of the system are shown in Table 1.

https://doi.org/10.25077/jitce.6.02.50-55.2022

ALDE ALANDA / JITCE - VOL. 06 NO. 02 (2022) 50-55

Alde Alanda https://doi.org/10.25077/jitce.6.02.50-55.2022 52

Table 1.The hardware specifications

 Parameter Specification

Host

OS version : Windows 10, 64 bit

Processor : AMDa A9

RAM : 8 GB

Hardisk : 500 GB

server
(AWS EC2)

Instance Type : t2.micro

Processor : Intel(R) Xeon(R) CPU E5-

2676 v3 @3,3GHz

Number of vCPUs : 1

CPU credits/hour : 6

Memory : 1 GiB

Storage : EBS

Network Performance : Low to Medium

server
(AWS RDS)

Instance Type : db.t2.micro

Processor : Intel(R) Xeon(R) CPU E5-

2676 v3 @3,3GHz

Number of vCPUs : 1

CPU credits/hour : 6

Memory : 1 GiB

Network Performance : Low to Medium

As seen in Figure 3, to implement the system, some steps must be

conducted:

• Create web aplications: A number of simple e-commerce

website was built that displays electronic equipment. This

website was built using various programming languages,

namely native PHP, PHP Framework, HTML, Python and

JS nodes.

• Create repository on github: GitHub workflow consists of

a fork, clone, push, commit pull request, and merged. A

fork is a step in copying a repository without affecting the

source repository. Clone is a step in copying the source

code and making changes to the existing code. Commit is a

step in verifying the changes made to the code that has been

made. Pull Request is a term that can be interpreted as a

request to merge code. Usually, there will be a discussion

to discuss the pull request that has been made. If accepted,

the code will usually be merged.

• Connecting GitHub with Slack: Connecting GitHub with

Slack is used so that notifications will automatically appear

on Slack when the project development team succeeds in

pushing code to GitHub.

• Create Deployment Environments: The Continuous

Deployment pipeline requires a target environment that

contains virtual servers or Amazon EC2 instances, where it

will deploy code. The first step that must be prepared is the

environment before creating a pipeline. To simplify setting

up and conFigureuring an EC2 instance, first create a

sample environment using AWS Elastic Beanstalk. Elastic

Beanstalk makes it possible to easily host web applications

without launching, conFigureuring, or operating virtual

servers. Automatically provision and operate infrastructure

and provision application stacks.

• Setting up the AWS CodePipeline: The pipeline

conFigureuration process is carried out in three simple

steps: source, build, and deploy. This setting involves the

location of the data repository, i.e. GitHub, and the

deployment environment that has been previously set.

• Setting up the AWS Elastic Beanstalk: It involves the

process of connecting with the database and

conFigureuration of email notifications. In this step, the

notification conFigureuration functions to provide

notification that every code is committed, and the code will

automatically be redeployed. A notification will

automatically appear in the email when the code is updated.

After all the settings are complete, the automatic deployment

system will run according to the following steps:

1) The developer pushes the project to the GitHub

repository. If the project is successfully pushed, a

notification will appear on slack

2) The project on GitHub will be pulled to the

CodePipeline server. In CodePipeline, each project

creates a service to carry out the deployment process

using the CICD concept

3) If the deployment process is successful, the API that

has been deployed will be read and entered into the

Elastic Beanstalk server. If the deployment process

fails, then the process will stop.

4) The next step is to do a trial using Elastic Beanstalk.

The trial process on the Elastic Beanstalk developer

will automatically get a notification email if the process

is successful or fails. If the production process is

successful, the application can be accessed by users.

The system will send messages or reports to the

developer about notifications about the system, sell

requests, or application health.

5) Process complete. The process will continue to repeat

every time there is an update to the system.

RESULTS AND DISCUSSION

Github and Slack Integration

GitHub and Slack repository integration are needed to monitor

the application development process, which is part of CI/CD.

Integrating GitHub with Slack, a message will appear from

GitHub indicating that Github and the workspace in Slack have

been successfully connected, as shown in Figure 4.

Figure 4. GitHub and Slack Integration

Every time a developer updates a GitHub repository already

connected to a channel in the slack workspace, a message from

https://doi.org/10.25077/jitce.6.02.50-55.2022

ALDE ALANDA / JITCE - VOL. 06 NO. 02 (2022) 50-55

https://doi.org/10.25077/jitce.6.02.50-55.2022 Alde Alanda 53

GitHub will automatically notify the user of the changes, as

shown in Figure 5.

Figure 5 GitHub and Slack Channel Integration

Email notification

When the application is successfully produced, an email

notification will appear from AWS Elastic Beanstalk indicating

that the application has been successfully produced, updated, or

provided application information whenever changes occur to the

system, as shown in Figure 6.

Figure 6. Email Notification

Automatic Deployment

Testing is carried out using several programming languages and

a repository of application sources. The programming language

used is native PHP, PHP Framework, HTM, Python, and JS

nodes. Automatic deployment testing can be seen in Figure 7 – 9.

Figure 7. PHP Deployment

Figure 8. Python Deployment

Figure 9. Node JS Deployment

From the implementation it is found that the website application

has been successfully deployed and can be accessed by users and

displayed. The webiste display is shown in the Figure 10

.

Figure 10. Web Application

Based on the test, it was found that the average deployment time

for these five source codes was 60 seconds. The fastest

deployment time is on the PHP framework, and the longest is on

PHP native and HTML, as shown in Figure 11.

Figure 11. Deployment duration

98

35

97

35 35

0

20

40

60

80

100

120

PHP native PHP Framework HTML Python

Framework

Nodejs

Framework

D
ep

lo
ym

en
t

D
u

ra
ti

o
n

 (
se

co
n

d
s)

Deployment Duration Testing

https://doi.org/10.25077/jitce.6.02.50-55.2022

ALDE ALANDA / JITCE - VOL. 06 NO. 02 (2022) 50-55

Alde Alanda https://doi.org/10.25077/jitce.6.02.50-55.2022 54

Tests were also conducted based on the application source code

repository type using Github and Amazon S3. The source code

that uses Amazon S3 has a total duration of 99 seconds, while

using Github has a total duration of 104 seconds, as shown in

Figure 12.

Figure. 12 Deployment duration of S3 vs Github

Testing the deployment method using Elastic Beanstalk and

Cloudformation, the test results can be seen in Figure 13. Using

Cloudformation requires a total deployment duration of 43

seconds and 45 seconds for Elastic Beanstalk.

Figure. 13 Elastic Beanstalk vs CloudFormation Deployment

duration

The test results using Elastic Beanstalk and Cloudformation show

several differences in CI/CD implementation. This difference can

be seen in Table 2.

Table.2 Elastic Beanstalk vs CloudFormation

Elastic Beanstalk CloudFormation

With Elastic Beanstalk,

users can select the

desired programming

language platform.

In CloudFormation, users

can use templates to

create, update, and delete

a stack as a single unit as

often as needed and do

not have to manage

resources individually.

With Elastic Beanstalk,

we can conFigure

databases, notifications,

instances, software, and

others.

When using AWS

CloudFormation, the user

is working with templates

and stacks. The user

creates a template

environment that will be

used
With Elastic Beanstalk,

we can see and control the

running application and

environment status

directly

Creating an EC2 instance

using CloudFormation

requires permission to

create an instance. Users

will need similar

permissions to stop

instances when deleting

stacks with instances.

Users use AWS Identity

and Access Management

(IAM) to manage

permissions

CONCLUSIONS

Automatic deployment was successfully implemented by

implementing the CI/CD concept. The application of CICD to

application development can speed up the application

development process from development to production.

Implementations that are made can support applications that can

be implemented on various programming language platforms.

Using Amazon S3 as a source code repository has the advantage

of faster deployment than using an external repository like

Github. Deployment using Cloudformation is more efficient than

using Elastic Beanstalk but from an ease-of-use perspective

Elastic Beanstalk is superior.

REFERENCES

[1] A. Alanda and D. Satria, “Implementasi Cloud Based

Video Conference System Menggunakan Amazon Web

Service,” JITCE (Journal Inf. Technol. Comput. Eng.,

vol. 5, no. 02, 2021, doi: 10.25077/jitce.5.02.75-

80.2021.

[2] C. Singh, N. S. Gaba, M. Kaur, and B. Kaur,

“Comparison of different CI/CD Tools integrated with

cloud platform,” 2019, doi:

10.1109/CONFLUENCE.2019.8776985.

[3] J. Mahboob and J. Coffman, “A Kubernetes CI/CD

Pipeline with Asylo as a Trusted Execution Environment

Abstraction Framework,” 2021, doi:

10.1109/CCWC51732.2021.9376148.

[4] N. Rathod and A. Surve, “Test orchestration a

framework for Continuous Integration and Continuous

deployment,” 2015, doi:

10.1109/PERVASIVE.2015.7087120.

[5] F. Palumbo, G. Aceto, A. Botta, D. Ciuonzo, V. Persico,

and A. Pescapé, “Characterization and analysis of cloud-

to-user latency: The case of Azure and AWS,” Comput.

Networks, vol. 184, p. 107693, 2021, doi:

10.1016/j.comnet.2020.107693.

[6] A. Kaur, G. Raj, S. Yadav, and T. Choudhury,

“Performance Evaluation of AWS and IBM Cloud

Platforms for Security Mechanism,” Proc. Int. Conf.

Comput. Tech. Electron. Mech. Syst. CTEMS 2018, pp.

516–520, 2018, doi: 10.1109/CTEMS.2018.8769215.

[7] D. Ståhl, T. Mårtensson, and J. Bosch, “The continuity

of continuous integration: Correlations and

consequences,” J. Syst. Softw., vol. 127, 2017, doi:

10.1016/j.jss.2017.02.003.

[8] S. Ferdian, T. Kandaga, A. Widjaja, H. Toba, R. Joshua,

and J. Narabel, “Continuous Integration and Continuous

https://doi.org/10.25077/jitce.6.02.50-55.2022

ALDE ALANDA / JITCE - VOL. 06 NO. 02 (2022) 50-55

https://doi.org/10.25077/jitce.6.02.50-55.2022 Alde Alanda 55

Delivery Platform Development of Software

Engineering and Software Project Management in

Higher Education,” J. Tek. Inform. dan Sist. Inf., vol. 7,

no. 1, 2021, doi: 10.28932/jutisi.v7i1.3254.

[9] Y. Pan, “Lululemon Provides Better Costumer Services

through Digital Ecosystem,” Highlights Business, Econ.

Manag., vol. 1, pp. 127–130, 2022, doi:

10.54097/hbem.v1i.2332.

[10] P. Barus, “No Title,” Building CI/CD Pipeline using

AWS CodePipeline, AWS CodeBuild, Amazon ECR,

Amazon ECS with AWS CDK, 2020.

https://dev.to/petrabarus/.

[11] N. Neelima, B. Basaveswar Rao, K. Gangadhara Rao,

and K. Chandan, “An experimental evaluation of

running cost analysis for web application on cloud using

queueing model,” Int. J. Eng. Adv. Technol., vol. 8, no.

3, pp. 629–634, 2019.

https://doi.org/10.25077/jitce.6.02.50-55.2022

